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An integral equation for the electromagnetic field within a die-
lectric body is given. The equation is set up for numerical solution
for the case of thin-wall c¢ylindrical dielectric shells having finite

length.
The solution of the integral equation utilizes a truncated double

Fourier expansion of the field in the shell. The integral equation is }
then enforced at enough points within the shell wall to obtain a suf-

ficient system of linear equations in the unknown expansion coefficients

of the field. Numerical integration over the shell volume is used to

obtain the coefficients in the system of linear equations. The sys- i

tem of equations is solved numerically for the expansion coefficients

of the field in the shell. Calculation of the backscatteréd fields and

the backscattering cross section are then performed. ‘
A comparison of the calculated and measured backscattering cross

section is made for rings with arbitrary plane wave incidence and for

tubes with axial plane wave incidence. The agreement is excellent in

all cases considered.
The numerical methods, experimental arrangement, computer programs

and suitable extension of this work are discussed.
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CHAPTER I
INTRODUCTION

It is a relatively difficult task to accurately calculate the scat-
tering characteristics of dielectric bodies when they are placed in an
arbitrary electromagnetic field. Knowledge of dielectric scattering is
important when a protective dielectric shell is placed over an antenna
and when radar mapping is used for geophysical or military purposes.

The research discussed in this paper was motivated primarily by interest
jn the scattering from protective dielectric shells (radomes) when placed
over an antenna.

By comparison with the effort expended on electromagnetic scat-
tering from perfectly conducting bodies, the amount of research on
scattering from dielectric bodies is small, Some of the earliest work
on dielectric scattering was done by Lord Rayleigh. Stratton [1]
points out that Rayleigh applied the electromagnetic theory of light
to scattering by dielectric bodies which are small in comparison with
a wavelength. Lord Rayleigh used his results to describe scattering
by colloidal particles and to explain the blue cast of the sky.

Rigorous solutions for plane wave scattering from dielectric bodies
have been found for the sphere,[2] the infinite circular cylinder,[3,4]
the infinite elliptic cylinder,[5] the infinite parabolic cylinder[6]
and the infinite plane dielectric slab.[7] Tice and Adney[8] for-

mulated a rigorous solution for a dipole within a spherical shell and
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Andreasen[9] developed an asymptotic solution for a dipole within a
thin spherical shell.

The homogeneous vector Helmholtz equation must be satisfied in a
source-free homogeneous medium by the vector potential functions for
the electromagnetic field. Morse and Feshbach[10] have observed that
this equation is separable in only six coordinate systems (rectangular,
circular cylindrical, elliptic cylindrical, parabolic cylindrical,
spherical and conical). They also point out that, although rigorous
series solution can be obtained for the remaining five coordinate systems
in which the scalar Helmholtz equation 1s separable,[11] "the fitting of
boundary conditions is well-nigh impossible of attainment." The number
of problems for which a rigorous series solution is practical is there-
fore severely restricted.

Various approximate methods have been used to study the scattering
from finite dielectric bodies. Cohen[12) developed approximate scat-
tering formulas based on thé reaction concept and applied these for-
mulas to the infinite dielectric cylinder. Montroll and Hart[13]
derived formulas for the scattering of finite cylinders by approximating
the fields in the finite cylinder by those in the infinite cylinder.
Lind[14] also used the infinite cylinder field to approximate that in
a finite cylinder but added a "normal mode" correction to this solution.
Oguchi[15] derived formulas for the scattering by dielectric spheroids
of small eccentric{ty by considering the spheroids to be perturbations
of a sphere. Phillipson(16] calculated the scattering from dielectric
rings using an iteration method. Geometrical optics was applied by
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Peters and Thomas[17] to scattering from thin-wall spherical shells and
by Kouyoumjian; et.al.[18] and Peters, et.al.[19] to more general die-
lectric bodies.

For the Scattering from an arbitrary dielectric body, rigorous
series methods are impractical and the accuracy of the approximate
techniques is unknown. For these reasons, another approach, the in-
tegrai equation method, has been applied in recent years to some
dielectric scattering, problems. The integral equation method is fun-
damentally a rigorous numerical technique for finding the fields within
a dielectric volume.

The power of the integral equation method was recognized in an
early report by Rhodes.[20] A recent book by Harrington[217] devotes
a considerable amount of discussion to the solution of integral equa-
tions for field problems by means of the method of moments. Richmond
has used the integral equation method successfully to solve a varied
group of dielectric scattering problems: calculation of radome dif-
fraction patterns,[22] diffraction by metallic or dielectric toroids
with a coaxial magnetic line source,[23] scattering from finite die-
lectric cylinders[24] and scattering from infinite dielectric cylinders
of arbitrary cross section.[25,267 Waterman[27] has recently applied an
"extcnded" integral equation method to scattering by dielectric bodies;
heutilizes spherical mode expansions and satisfies the integral equa-
tion over the body's interior region.

The solution of an integral equation for the field within a body
is usually accomplished by approximating the equation by a system of

linear equations. The unknowns in the system are either the field it-
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self at a number of points within the body or a set of expansion co-
efficients for the field in the body. Solution of large systems of
equations and repeated computation of complicated volume integrals
require large, high speed computers. It is for this reason that the
integral equation method was not applied extensively prior to the ad-
vent of the modern generations of digital computers.

In general, a radome can be an arbitrary three-dimensional shape,
may be inhomogenepus and {s placed in the relatively complex near field
of a radar antenna. Solution of such a difficult scattering problem
must proceed in a sequence of smaller, yet significant, steps. Thus, as
the first step in this paper, the integral equation method is applied to
the problem of calculating the scattering by thin-wall dielectric cir-
cular cylindrical tubes of finite length. In Chapter Il the equivalent
source currents for the scattered field and the basic integral equation
are discussed. The expansion of the field in the shell, the derivation
of the system of linear equations and the Fourier expansion of an in-
cideét plane wavé are described in Chapter III. The techniques of nu-
merical integration, the special manner of integrating through the singu-
larity and the far field calculation are discussed in Chapter IV. In
Chapter V a comparison is made of the calculated and measured plane-wave
backscattering from dielectric rings and cylindrical shells. Conclusions
are presented fn Chapter VI. A discussion of the experimental method

and a description of the computer programs used are presented in the

Appendices.




CHAPTER II

FORMULATION OF THE INTEGRAL EQUATION

A. The Equivalent Currents

The following equivalence principle and its derivation were de-
veloped by Rhodes.[203 The derivation below is the same as that
given by Richmond.[28]

The time dependente e'Jvt

is understood and linear, non-magnetic
(u=uo), isotropic dielectric media are assumed. The medium may be
inhomogeneous and lossy, i.e., it may have a complex permittivity.
Let a current source J(x,y,z) in a medium (u;(x,y.z), si(x,y,z)
generate a field (Ei(x,y,z), Hi(x,y,z). This field will satisfy

Maxwell's curl equations:

(1) VXﬂ.i=i+J'we.i§

V.XE; =

i
'

o
€
=

x

Let the same current source J(x,y,z) in a new medium (u (x,¥,2), e(x,y,z))
generate a different field (E(x,y,z), H(x,y,2)). This new field must

also satisfy Maxwell's curl equation:

(2) VxH=Jd+juwek




The difference between these fields is called the scattered field:

(3) E,=E-E,
Hy = H - K

If Maxwell's equations for the two sets of fields are subtracted, we

obtain the curl equations for the scattered field:
;

(4)

<
*

jm(e-ei) E_+jwei_E_S

J,I'ﬂ J’I

<
®

=Jwlu - u) Ho~§wug H

The term j w(e -ei) E (which is nonzero only where ¢ # ei) may be
interpreted as an equivalent electric current density radiating in the
original medium, (“i ei). S%mi]ar]y, the term -j o{p - ui)ﬂ_2 can be
interpreted as an equivalent magnetic current density radiating in the
original medium (“i’ei)' These current densities are the sole source:
of the scattered field.

In this investigation, the original medium is chosen to be free
space s0 e; = ¢, Furthermore, all media are assumed nonmagnetic so

that My TuHT U and the equivalent magnetic¢ current density vanishes.

0

The electric current density, j w(e - eo) E, then becomes the sole

source of the scattered field and radiates in unbounded free space.
As noted earlier, the equivalent current concept can be applied

to inhomogeneous, lossy dielectric media.




B. The Integral Equation

The fields radiated by a source current density J in free space

can be calculated using an integral form such as

(s) EP = fff 28 (o) v,

where EP is the p-th component of the radiated field, J is the source ;

current density, V' is the source volume and gp represents the free

space vector Green's function for the p-th component. The equations
given by Richmond[28] and given in Eq. (9) can readily be put into the
above form. Substituting the equivalent current density of Eq. (4)
into Eq. (5) and using this result in Eq. (3), we obtain our integral

equation for the field in the dielectric body and the exterior free-

space region:
(6  EP=gf P S ule g E - G (rar) oV

To determine the field, it is sufficient to enforce Eq. (6) in the

interior region.
Equation (6) must be satisfied for each of the three components

of the field such as EX, €Y, and EZ in rectangular coordinates
or E°, €% and E% in the cylindrical system.

Solution of Eq. (6) yields a solution for the total field within
the body. Then the field at any exterior point can be calculated from

Eq. (6). For the scattering by cylindrical dielectric shells, a tech-
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ral equation 1s outlined below. Up to this

nique for solving the integ

point the analysis covers lossy and 1oss less, homogeneous and inhomo-

geneous dielectric bodies with arbitrary size and shape. Now to i1lus-

trate the techniques we hereafter restrict our attention to a specific

case: thin-wall, homogeneous » dielectric circular cylindrical shells.

The shell is assumed homogeneous and sufficiently thin that any

radial variation of the fields is negligible within the shell. The

shell and its coordinate system are i1lustrated in Fig. 1. At any point,

z, along the shell, the field components can be expanded in 2 Fourier

series in ¢. The expansion coefficients in this series are functions

of z and are 1ikewise expanded in a Fourier series {(in z). Both series

are truncated to finite sums as a practical matter. The degree of

truncation depends on the particular shell and the incident field.

The expansion coefficients are determined by enforcing Eq. (6)

at many paints in the shell to obtain a set of cimultaneous linear

equations in the expansion coefficients. The system is solved for the

expansion coefficients, oY equivalently, for the field within the shell.

Finally, when the yotal field within the shell is known, the asymptotic

form of Eqg. (6) is employed to calculate the distant field.

P
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CHAPTER 111
SOLUTION OF THE INTEGRAL EQUATION

A. Field Expansion and the System of Linear Equations

The coordinate system and a cylindrical shell are shown in Fig. 1.

The circumflex indicates a unit vector,

Fig. 1--Cylindrical coordinate system
and cylindrical shell.

The shell is assumed to be sufficiently thin that field variations
with p can be neglected within the shell. In the dielectric region,

the fields can be expanded in a Fourier Series as follows:

-t v et e e SRR e

OGRS gy
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E(z) = § EA& (z) cos(ng) + Bﬂ (z) sin n¢J ‘
n=0

(1 ¢ E¥2) - ei [A® (2) cos(ny) + B‘,’; (z) sin n¢]
n=0

E%(z) = EO CA,%(z) cos ng + B (2) sin no] i
n=

e I R RSP

In Eq. (7), as noted, the An's and Bn's are functions of position

along the shell and can be represented by a Fourier series in z. The

i
!
!
i

period of the expansion.is p where p is greater than or equal to the 0

[
' ;

shell length. The expansions of the An's and Bn's follows:

T 2mn . 2mm
A (z2) = mZO [a;ncos (—5—-2) + as;ns1n (—5- z)]

1. ® | ® @] o

2 P sin (2M
Lo COn cos ( 5 2) + bsmn sin ( 5 2))

mn

= S .Z_m_’_'. ) ¢ i -_zml
A (2) mzo [agn cos ( 5 z) + as’ sin ( 5 2)]

} q - |
¢ = ¢ 2mn ¢ cin (2
B, (2) mZO by, cOS ( 5 z) + bsp, Sin ( 5 z)]

;

%‘ 20,0 = T ra? 2m z 2mn ?
A, (z) mZO Capy, <os ( 5 z) +as sin ( 3 z)] %
B (2) = J [bf, cos (B 2) + bsZ sin (B 2)3

m=0
In the circular cylindrical system, there will be no coupling be-

tween modes of different index n in the ¢-expansion. For this reason

. it ¥s possible to solve the integral equation for one value of n at a
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time, to obtain the solution for all necessary n and then to superimpose

the results to determine the total field within the shell. This allows

a considerable saving in computer storage compared with solving the

entire system in one fell swoop. The z-expansion must be cons{dered

in its (truncated) entirety for each value of n, however.
Vo Eq. (6) is to be enforced at a number of points in the shell, For
numerical purposes, the shell is divided into equal-length elemental
rings, each ring being short compared with the wavelength. The numerical
I . integrations over the tube (shell) are performed on a ring-by-ring basis

and the total integral is found by summing the contributions of all of

oo the rings. Fig. 2 illustrates the subdivision of the cylindrical shell.

X MATCH POINTS

AN

|
|
|

’ l ; Fig. 2--‘Division of shell into elemental rings.
|
|
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The match points (points of enforcement of the integral equation)

are at the center of the wall cross section of the matching rings (two
per ring) and are located at ¢=0 and ¢= %- g.. The matching rings are
evenly spaced along the tube. If M is the maximum index of the z-expan-
sion, (2M + 1) matching rings are required to obtain a complete system
of equations in the field expansion coefficients.

The next step is to evaluate the integrals for the scattered
field at points in the shell. In the following work, attention is
confined to the n-th mode in ¢; it is understood that in general many
such modes may be needed to obtain an accurate solution for the total
field in the shell.

The following equations are given by Richmond[ 28] for the cartesian
components of the field generated in free space by a source current
density with components J%, 0¥, and J%:

s
YR e R I 4 D)

+ (y-y" )Y + (z-2') 3%} dv’

(0) @RS g R P ey e
+ (y=y")¥ + (2-2')9%]) dv'

[ e e(r) 3 4 (z-2)0R ()"
v

+ (y-y' )oY + (z-z')I%7} dv'

_ J




In Eq. (9),
( 2 .2
P(r) = -1 -j k%“" k® r
4 r
(10) . 2 2
o(r) = 22 31*§r ~k r
! r

In Eqs. (9) and (10), k = o 6% = 2r/2 and

r= \Ipz + 0% = 200" cos(&¢') + (z-2')°
is the distance from the source to the observation point. The equiv-
alent current density, ju(e-ey)E, is substituted into Eq. (9) to ob-
tain an expression for the scattered field in terms of the total field.
The field components are then converted to circular cylindrical com-
ponents and the field expansion of Eq. (7) and (8) used to get the

following result for the n-th mode scattered field where ¢, = cos(ggl z),

= 2mn - '
s sin(-s—z) and €p e/eo.

m
(11) L Togyy ek
sn 41!’ m=0 v(
(o} P ) (o] e [ '
(r {(amn Cp ¥ aS sm)cos ne' + (bmn cm+bsmnsm)sin ne'}cos¢
¢ ] ' ¢ ¢ : 1yg4 1
-{(amn cm+asmnsm) cos ng' + (bmncm+bsmnsm)s1n ne'}sing

( p ' P P 1 '
{(amncm+asmnsm) cos ng' + (bmncm + bsmnsm)sin ne'} cose

2
+Q(r)}(x-x")
¢ ¢ ¢ ¢ 3 ) 3 [}
{(amncm + asmnsm) cos ng' + (bmncm + bsmnsm)s1n ne'}sing




+ Q(r){x-x")y-y") {(a;ncm + as;nsm) cos n' + (b° ¢+ bsP s )

mn “mn mn>m
sin n¢'} sing’
$ ¢ ' ¢ $

(11) +{(a.mnc.m + asmnsm) cos n¢' + (bmn9m + bsmnsm)

(cont.)
sinn¢'} cos ¢'

+ Q(r){x=x")(z-2") [(a,znncm + as® s ) cos ne'

mn m dv’
Z rd '
+ (bmncm +bsmnsm) sin nf]
G2) By =2 T g e
sn 417 m=0 vl

o] o} t o] p : ] [}
{(amncm + asmnsm) cos ne' + (bmncm + bsmnsm)s1n ne'lsin ¢

‘b ! ¢ ¢ 3 []
mnsm) cos n¢' + (bmncm + bsmnsm) sin n¢'}cose

+ P(r) »
+{(amncm + as

((a® c + asd s ) cos ng' + (bP ¢+ bsP s )
+ QUr)(y-y' ) (x-x") mn m mn~m mn"m mnm
sin n¢'} cose’

TR 6 : ¢ ¢
{(amncm + asmnsm) cos n¢' + (bmncm + bsmnsm)

sin n¢'} sin ¢'

((a® c + asP s ) cos ne' + (b° ¢ + bs? s )
+Q(r) (y_y.)Z mn m mn°m mn-m mnm

sinn¢'} sin ¢'

.+{(a:;ncm + as‘tnsm) cos n¢' + (bﬁncm + bS:;nSm)

sin n¢'} cose¢’

+Q (r)(y-y')(z-2") [Eq;ncm + as;nsm) cos n¢' + (b:mcm + bs;nsm) dv'

sin n¢'




I —
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(13) EZ= —4——-£" ! ) Jj] endkr
sn . T m=0 v'
z z . z z . '
P(r) [(amncm + asmnsm) cos n¢' + (bmncm + bsmnsm) sin n¢']

mnm m mn>m
sin n¢'} cos ¢’

((a® ¢ + as® s )cos ne' +bP ¢ + bsP s )
+ Q) (z-2") (xex)| T nm
¢ ¢ ¢ ¢
{(amncm + asmnsm) cos ng' + (bmncm + bsmnsm)
sinn ¢'} sin ¢'

!

p P 1 p e
{(amnch + asmnsm) cos ng' + (bmncm + bsmnsm)

+ Q) (z-2") (y-y")

sin n¢'} sin ¢'
¢ ¢ 1 ¢ ¢
+((amnc|m + asmnsm) cos n¢' + (bmncm + bsmnsm)

sinn ¢'} cos ¢'

+ Q(r)(z-z')2 l}a;ncm + as;nsm) cos n¢' + (b:mcm + bs;nsm) sin n¢] dv'

The symmetries of the integrands for the scattered fields about
$=0 and-¢ = %-%-permit a convenient correspondence between the inte-
grations for a match point at ¢ = 0 and one at ¢ = %-%n Only the inte-
gration for ¢ = 0 need be calculated and the ones for ¢ = %-%-can be
obtained from them. Also, the odd symmetry of some of the integrand
terms results in those terms integrating to zero for a match point at
¢=0o0r¢-= %-%-- After making use of the odd symmetry of certain
terms and of the relationship between the ¢ = 0 and ¢ = %-%-calculations,

the cylindrical components of the scattered field for a given matching

ring can be written:




(14X E:n(o,z)

(IS)ﬁ 3

below. The integrals are to be calculated for an observation point

the z-coordinate of the match point in question.

16

(sr-l) z a nn Al (Z) amn A2 (Z) + b¢n A3mn(z)

v}
Esn(o,z) A

0 (Z) z (z) ¢
Bl *+as B2 +bs B3mn(z

(e, -1) Z
n B4 (Z) + bs Bsmn‘z) + as:m 6, (2) |

(2) )
E:n(O,z) . (Er-l) A7 a; A8 (z + b;n Agmn(z)

“~

=0

$M8

0 (2) z (z) ¢ -
BTn  * asg B8 12 4 bs® Bgmn(zj ?

{ be A4 (Z) + b2 A5 ‘Z) + 3t a6 (2)

. = bf oA 2 nz (). a®
£ ('1‘ La)= (e -] ™ + b7 A2 A3, (2)
m=0 bsp Bl (Z) + sz BZ (Z) - aS¢ B3mr{zzj
- (z) | ¢
sn'‘n 2’2)' (e.-1) 2 mn mn " fon P ) -
m=0
35:", B4mn(2) - as:m Bsmn(Z) + bs;n Bsméz

z 1w e
Esn (Ff z)= (er'l) ZO
m= P z

+ bsmn B7mn( ) + bs Bamn(z) as® B9 (z

o (Z) z (z) _ ¢
b A7 + b A8 on - amn A9 n(Z)
L
Al,,(2) through A9mn(z) and B1mn(z) through Ban(z) are defined

at the center of the shell wall cross section for ¢= 0 and z equal to

‘e




; A1m£2) } 3% [1f e-Jkr {P(r) cos ¢' + Q(r)(x-x')2 cos ¢'
vf

+Q (M (x-x")(y-y")} cos (22;12-) cos ny' dv'

A2m£2) =1 Iff o dkr Q(r)(x-x*}(z-2') } cos (ZEEZ-) €os n¢'dy'
4n v' P

A3m£z) = %; f{[ e ~dkr {-Pr) sin 4' - Q(r)(x-x')2 sin ¢'
+ Q(r)(x-x")(y=-y') cos ¢'} cos (ggi z') sin n¢' dv'

4m,(,z) - & 1] KT (p(r) sin o' + QUr) (x=x")y-y') cos o
v

( Zmn

+Q(r) (y-y")? sin ¢'} cos z') sin np' dv*

4r

(16)
A5m£2) = %. f( e " p(r) cos o' = Qr)(x~x')(y-y') sin ¢'

2m1r

+Q (r)(y -y cos ¢'} cos (2B 2') cos ned dv'

A7mgz) = fff e~ Jkr. {Q{r) (z-2')(x~x') cos ¢°

+ Q(r)(z-z Yy-y') sin ¢'} cos ( z') cos n¢' dv'

B

g = de I T ) o) st

L

+ Q(r)(z-z‘)(y-y') cos ¢'} cos (g%lz‘) sin n¢' dv'

as (2 2l prr e T3 (g(r)(yy')(2-2')) cos (BB 2') sin nedy'
vl

Aqmgz) - %; (1 e p(r) + QU (z-2')2) cos (-—2 Ycos n¢' dv'
vl




1mn(z) through 89 (z) are found directly by replacing cos ( V

by sin (--— 2') in the correspond1ng equations for Al (z) through A9 (ﬂ
The 1ntegratiors for the By, (z).s are also evaluated at ¢ = 0.

The field expansion of £q. (8) and the results given in Egs. (14)
and (15) are used in Eq. (3) to obtain the set of linear equations
corresponding to one point along the shell, i.e., for one matching ring.
The summation over m has been truncated to a maximum index value of
me= M. For this case a total of (2M + 1) sets of the following equa-
tions wi11 be necessahy to have a sufficient system. In Eq. (17), the
dependence of Al mn® etc upon 2 has not been shown explicitly; it is

understood that these coefficients are functions of the z-coordinates of
the matching rings.

(7), |
® q;ncos(ggi-z) @)+ ( ) a;nAl +asmnBI:mﬂ:mAzmn
ZH+ o |
=0 +asm:sin(3glz) 1" °r 2 o +asZ B2 +b® A3 +bs? B3

mn=Tmn TmncTmn T TmnT Tmn

“

s
P P z
ﬁnnc°s( af )+ (c 1) ? ! bmnA4mn bS B 4mn*Pmn?5nn
-O +as sin(zm" y i

- ]
m=0 +bsmnBsmn+amnA6mn+asmn86an
\

z 2mn o 2 )
ﬂnncos P a2 (2)+ (e _1) amn mn+as B7mn"’*ﬂn"amn |
+asZ sin(Zmrg) 0 m=0 | +asZ B8, +b¢ A9 +bs? 89

m “mn "Tmn I'Mﬂ

(@) + (e -1) mn o Cmn omne mn omn’ “mn
$
m=0 +bsmnBzmn ahn mn~3SmnB3n

=0 +bs° cas(z'“1r

b }
M bP cos( } b? A1 +bsP B1 +bZ A2

- I~ W _—_
. A A S TR = . 4%
. .-
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( 2
¢ mn }
M bm2c°5( ; z) A (. _1)§ amn n asmnB4mn mnAsmn
. 2mm in
m=0 +b5mn51"('ﬁ"?j " m=0 asmnBSmn+b$nA6 +bs$n86m
(17)C
cont . omm
M b__cos(~5— ( ¢
mn©° ( P z) = p? N bmnA7mn mnB7mn mnAan
z _. 2mm in(2h+ (e-1)] g a0 ¢
m=0 ftbs sin(5=z) m=0 L+bsmn88mn a0 Pn =25 mnB%n

\
The a?n(z), a$n(z), etc. are the n-th mode expansion coefficients
in the Fourier expansion (in ¢) of the incident field at the particular

matching ring in question.

B Incident Field Expansion

In general, the incident field may be very complex, e.g., the near
field of an antenna. To illustrate the technique, however, we shall con-
sider the case for which the incident field is a linearly polarized
plane wave with arbitrary propagation angle g. For this case a formula
for the Fourier expansion of the incident field can be found quite
readily.

The Fourier expansion of the incident plane wave over a ring
of radius a can be found from the general form of the plane wave at any
point in space. Fig. 3 illustrates the geometry,

The phase of the incident wave is relative to the origin and the
rectangular field components have been converted t6 circular cylindrical

components in the equations below.

for the TE case, the incident electric field is given by:

TE . . . 3
(18) E;(0y8,2) = (p cos ¢ - ¢sin ¢) e *+Jkesin ¢ siné  +jkzcose
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Fig. 3--Linearly polarized incident plane wave.

The Fourfer-Bessel expansion is needed:

o n n
Zo N,3" 3,(ue) cos n(e- 3)

. "y
oJupsing _ ejuocos(o- 5) = )

(19)

In Eq. (19f. u =k sine
. 1jn=0
Nn 2 {; 1

J“ i{s the n-th order Bessel function of the

iv

first kind.
Equation (19) is used in Eq. (18) and after simplification, the

TE 1ncident field can be expressed by the following Fourier expansion:
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(20) (beot) = 5 ) (
0 E,(pr9s2) = o {3 (up) +J_.,(up)] cos ne
= { n=1,3,5... "1 n+l
jkzcose
+ n=2§4,6... J D, 1 (up) + Jn+1(UQ)] sin n¢}e
+ ¢{-J' Jl(uo)
+ 7 -03__,{up) =3 .. (up)] sin ng
n=1,3,5... "1 n+l
- kzcoss
nebag. .. $ Dnea(Ue) = dpag(15)3 cos M}QJ
For the TM case, the incident electric field is given by:
(21) §4TM = (p cose sing + ¢ cose cose - z sing) eduesine dkzcoss

Comparison with Eq. {18) shows that with the exception of the

2-component, the TM expansion can be obtained directly by using the re-

Sults of the TE expansion. The final result is:

™ .
(22) E;(p»442) =0 cos {J Jp(up) + n=12’3’5...[J,,_l(uo)-«J,,,Ll(up)]sin ne

. kzcose
+ -3 [ 4(up) =~ J .. (up)]cos ne¢ e
n=22.4.5 o ol 1

+ ; cosé 09, 4(up) +J_,.(up)] cos n¢
{n-1§3.5... n-1 n+l

kzcosg
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(22) - 2 sing {go(ua) + 7 ZJn(up) cos n¢
cont. n=2,4,6...
+ 3 j2 9 (up) sin n¢ eJkzcose
n=1.3’5.oo .

The Fourier expansions over a ring of radius a can be found by

substituting a for o in Eqs. (20) and (22).

a - e e R




CHAPTER 1V
INTEGRATION PROCEDURES
This Chapter discusses the techniques of numerical integration used
in the solution of the cylindrical shell scattering problem. The gen-
eral method of calculating the scattered field in the shell, the for-
mula for handling integration through the singular points and the for-
mulas for calculation of the far scattered fields are discussed.

A., General

The coefficients defined in Eq. (16) must be evaluated at ¢4 = 0
for each value of the ¢ mode index n and the z-mode index m at each of
the matching rings. " The general procedure for the numerical integra-
tion s to divide the shell into elemental rings as shown in Fig. 2.
The integrals are then calculated over each ring for each of the match
points at ¢ = 0 and the total integration is obtained by adding the con-
tribution of all the rings.

Integration over a given elemental ring is accomplished by dividing
the ring into a number of subcells as shown in Fig. 4. The maximum
arc-length of any subcell is much Tess than a free space wavelength and
the angle subtendad by the subcell at the ring center is small compared
with the smallest period needed in the ¢-expansion.

For the case of a match point far from a given ring, the trapezoid-
al rule of numerical integration is applied over the entire ring with
the center of each subcell providing one data point. For the case of

a match point close to the ring, finer subdivision of the cells closest

23
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Fig. 4--Ring subdivision for numerical integration.

to the match point is required to obtain accurate results.

The case in which the match point is within the ring being inte-
grated over is a rather special one. Examination of P(r) and Q(r) in
Eq. (10) reveals that one can expect severe numerical computation prob-
lems as r approaches zero. In this case, the usual numerical integration
procedure (including finer subdivision for cells near the match point)
i{s used to calculate the contribution of all the parts of the ring ex-
cept for that of the cross-hatched cell in Fig. 4; this cell is the
so-called singular cell.

The contribution of the singular cell at its center is then cal-

culated from analytical formulas. These formulas are derived in the

next section.
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B. The Field at the Center of the Singular Cell

Three basic assumptions are used to obtain the singular cell contri-
bution at its own center. First, it is assumed that the cell can be
closely approximated by a rectangular parallelopiped. Second, the cell
is assumed sufficiently small that any field variations within its
volume can be neglected. Finally, the linear dimensions of the singular
cell are assumed to be much smaller than the wavelength.

The rectangular parallelopiped is a suitable approximation to the
shape of the singular cell in an elemental ring of a thin cylindrical
shell.

The second assumption is also valid since the odd symmetry of
the sin n¢ mode about the center plane of the singular cell can be
shown to result in zero field at the cell center due to sin n¢ current
denstities. This leaves only the cos n¢ variation with ¢ and this term
has a zero slope at the center plane of the cell. The period of the
z-expansion is assumed 1arge.enough that variations with z along the
singular cell can be safely neglected.

The singular cell problem is therefore reduced to finding the
electric field at the center of a rectangular box of uniform current
density flowing in an arbitrary direction. Consider the box of cur-
rent density to be aligned with a local cartesian coordinate system with
the origin at the center of the box as shown in Fig. 5.

Examination of'the symmetry of Eq. (9) for this case shows that
only 9% will contribute to EX, 3 to Y and 9% to EZ. Thus, the sol-

ution needs to be developed for only one component of currcnt and a
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Fig. 5--Rectangular parallelopiped of current density J.

cyclic rotation of the coordinates will give the solutions for the

other components. The solution will be found for J = x J%.

Consider Maxwell’s curl equation relating the electric field to

the curl of the magnetic field:
= 1 -
(23) E Tue, vxH-4d]

J is assumed known and uniform in the small box. In order to

evailuate the field of this source at the center of the box, then, v x H

must be found at the center.
By symmetry, for this particular problem, there will be no magnetic

field at the center of the box, nor wil: there be any magnetic field
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whatever at any point on the x-axis (for an x-directed current density).
Y _ o

Thus, for this case, Hx(x,o,o) = 0 and =% " ° 0. The curl operation
on H can therefore be written as follows:
Xy z
do2 2 I
(24) VXﬂ_}ooo)-OW 3z 'x[-gf- 32}
AR P (0,0,0)

(0,0,0)

The partial derivatives of H? and W will be found by evaluating
the magnetic field at the center of the box (known by symmetry to be
zero) and at a small distances Ay and Az along the y-and z-axes. The

partial derivativas are then found from the definition:

f
(25) H _tim Y _ 1im  HY(0,0,82) - #(0,0,0)
9z 4220 Az Az Az

H: . lim aY 2 lim HZ(0,8y,0) - H2(0,0,0)
3y ay»0 &z Ay-+0 Ay

L

Fig. 6 shows a view looking down the x-axis at the box of current,
From symmetry considerations, it can be seen that Region I will not
contribute to the magnetic field at (o,Ay,0), the magnetic field at
that point will be strictly due to Region II. Fig. 7 shows the geometry
which is now considered. For the special case when the distance and di-
mensions are small compared to the wavelength, the x-component of the
magnetic field at a point a distance y = b from the center of'the slab

of current can be shown to be:
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Fig. 6--View of the box of current from the positive x-axis.
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Fig. 7--Geometry for calculation of magnetic field.
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X
ZJnAx tan” ac

bL2+b2+c2

Similarly, the y-component of the field a distance z=c along the z-axis

(26) HZ

can be shown to be:

X
(27) Woe o 2008z, -1 ab
i 2,2 2
cia +b"+c

Reference to Fig. 6 reveals that the incremental fields sought

are those fields just calculated. Namely,

X
(28) H2(0,ay,0) = 29 Y tan7l ac
L a +b"+¢

X
Hy(OQO, Z) - gi:’;'A-z- tan-l —'—-g-b——
c a2+b2+c2

These are used in Eq. (25) to find:

(29) r_a_u{= A (‘ ab )
) az " \la2+b2+c2

z X
L al+plsc?

Use of Eq. (29) in Eq.(23) gives the final result for the electric

field at the center of a box of x-directed current density J*:
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X
(30) EX = mﬁ 2: {}an -1 (}———555—-——€) + tan'l(; ab J%
T NZid i

Similarly, for £ and EZ,

8 )
y
(31) Ey s J})e g%_ tan-l (__b_a_.____.) + tan'l be ) j
0 a2+b2+c2 Q +b2+c

3

el z
Jue, | n (; +tan” (:———————-{) -J
° “awag} 20248 |

1f 9%, oY and 9% are rep]aced by the equivalent currents of Eq.

(32)

(4), we have directly the scattered fields at the center of the singular

cell contributed by the current in that cell:
r -

X = (e,-1) X ¢2ltan"! ( ac )+ tan” (‘ ) -
- b a2 b2+c2 a +b2+c2

ba

: ' 2 -1
(33) ¢ Esy = (e,-1) 24 {}-tan (-———————-——{)+ tan” (a ) -
§ ¢ a2+b2+c2 qa +b2+c

a +b +c a2+b2+c2

It was pointed out earlier that within the singular cell, only the

A |~

=|no

z, (e,-1) 24

equivalent current component in the direction of one of the local coor-
dinates will contribute to that component of the scattered field. The
above formulas will therefore be applied only in calculating the values
of coefficients in Eqs.(14) and (15) which represent self-coupling terms,

For example, there will be singular cell contributions necessary in the

h v S———
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calzulation of Almn(z) and Blmn(z) in Eq. (14) since these represent
the "self-coupling”of E° to ES°.

C. The Far Scattered Fields

This section gives the derivation of the formulas for the far
scattered fields of a ring of current having o, ¢ and z components of
current density. The far fields of a cylindrical shell of current are
then obtained by superposition of the fields of the elemental rings making
up the shell. !

The far field of a source in terms of cylindrical source components
as given by Richmond[287 is given in Eq.(34). The primed coordinates
are the source coordinates and Fig. 8 defines the geometry for the far

field calculation.

r .
3 -jkr ] ]
g° = %%H- & ~ 9 [ff [-3° cos(¢-¢') cosa - J® sin(¢~-¢') cose
[\ V'
(38) + Jz'sine] oJKkLe cos(4-¢')sine + z'cose]
. p! dpl dzl d¢'
"jkf‘ ' )
et dpp 29 I‘Il{ [9° sin(e-4') - 3¢ cos(e-4')] .
)
oJkLp' cos(¢-¢') sine + z'cose]
L .pl dp' dz' d¢'

For the case of a very short, thin ring, of length 2, thickness t
and mean radius a, the integrations over o' and z' can be replaced by a

multiplication by (t-2). In addition, if we replace J°, J® and J% by
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Fig. 8--Geometry for the far field calculation.

the equivalent current of Eqs. (4), we find, for the scattered fields,

( .
2,2 _-jkr .
Es - K 4:e e = 0 o tJk 2' coss ( t-2-a)-
| 21f ' ]
[ [EP cose cos(¢=¢') - E* sin (¢9=¢') cose
0
o (35)4 s Ez' sine] ejka sine cos(¢-¢") do’
1
‘ 2 2 "'Jk" '
¢ K-ke- e“" o , Jkz' cosep, . ..
Es e P o e (t-2-a)
2n [ U -a?
] !0 [E°'s1n(g-0') = E¥' cos(g-¢')] ke sine cosle-¢') 400
| -
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where k2 - ke2 = wzuo(eo-e) .

The field expansion of Eqs. (7) and (8) is used in Eq., (35) and,

in addition we let Cp = C€OS (%‘1 z), Sy = sin(-z%'lz) and

2,2 .
K= (t-2.a) K™k~ ¢ ~Jkrg oJkz' cose

T
4 o

in order to find (for the n-th mode in ¢):
r
2n

M
b - ¢ - (3P ' [ ' '
En =K ZO {cm é C- (ag,cos ne' + bo sin ng') cose cos(¢-¢')

- (agn cos I’l¢' + bgn sin n¢|) cosg Sin(¢-¢')

+( a,ﬁn cos ne' + b;n sin ne') sing] e JKa sine °°S(¢'¢')d¢'

2w
(36) + sm({ [- (asr‘:lrl cosy ' + bs:msin ne') cose cos(o~¢')
- - ® ‘ il an
ﬁ (as%n cos ng' + bsmn sin né') cose sin(¢-4')
cos ¢’ + bs:msin n¢') sine] e‘jka sine cos(¢-¢')d¢.}

+
( asmn

M 27
tort § [ gy b s
] ot
- (am= cos ng' + b':n sin n¢|) COS(¢-¢')] eJka sing COS(¢ ¢ )dQ'
2r

+ smé [(as,‘r’m cos n¢' + bs,“’m sin ng') sin(¢-¢")

- (as;n cos ng' + b sin ng’) cos(e-')] edka sine cos(o-6')y,

“
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For the cases considered in this paper the incident field is a

b
plane wave at ¢ = I If this value of ¢ and the Fourier-Bessel series

(Eq. (19)) are used in Eq. (36), the final result for the far scattered
fields of a ring of "equivalent current density" can be shown to be:
(
j _om e (b° -at )
E:n =1k I m-mn mn ¢ o ©° cos(n+l) 7 - il Jpep(ua)
; m=0 __Sm (bsmn-a o
e (- bP -a? ) _
‘ mn mn¢ cose cos(n-1) 5 - 3l llJ‘“_”(ua)
jsm(' bs‘mn' Smn )
f ¢, (a0 -b¢ )
! + mn —mn coso sin(nt1) & . 3™ . g . (ua)
+s_(-as? -bs?® 2 ntl
m mn - omn
>(37) (aO _b¢ )

c
+ [ "'"p mn A :I cos¢ sin(n-1) & - jI"'”-J‘n_l‘(ua)
+s, (as_ -bs )

(Crtrm * Sy2Spn) COS Nl n
+ 2 mn 2 sing . J Jn(ua)

(Cmbn + SpbSzn) sin n.TZL
M ¢ ( +b¢
gy e f [ [l ¢] cos(nd) - 37 - dpyqlua)
m=0 1 :Sm(asmn+bsmn)
(£ b4 -
+ on s | cos(n-1) 5 - jin-al. Jip-1((va)
*Sm (as° n-bstn)
; -y
, (60 ,=3%,)
' °mn~3mn sin(n+1) % . jn+1 . Jn+1("a)

P _aet
"'sm(bsmn asmn)_

G (DAt 1
mn mn sin(n-1)
+s_(bsP + as¢ o)

M

’2'_ . J|ﬂ~1|- J(n_l‘(ua)}
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The scattering cross section of a scattering body is defined as

follows:

2 2
1im 4n E (e,
R~

| ) f

In order to calculate the scattering cross section, then it is
simply a matter of ca]culating the far scattered field and then applying
Eq. (38). It should be noted that K in Eq. (37) involves a factor 1/r
which eliminates the r2 in Eq. (38). E1, of course, is the field in-
¢cident upon the body and in this case is taken to be of unit magnitude

so that |51|2 =1,
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CHAPTER V

COMPARISON OF CALCULATED AMD MEASURED RESULTS
The cases considered are all for the backscattering of a linearly
polarized plane wave incident on a homogeneous cylindrical shell and
parallel to the plane ¢ = %-. The wave is polarized TE (transverse
electric) or TM (transverse magnetic) to the shell axis and has a prop-
agation angle 8 with respect to the shell axis.

A. Dielectric Ring Backscattering

The first case considered is for the plane wave incident along the
ring axis. This is followed by a calculation for both TE and TM plane
waves with arbitrary incidence angles. For arbitrary incidence, many
modes in ¢ are needed to obtain the field in the ring. Figure 9 illus-
trates the geometry.

The ring is sufficiently short that only the zero order mode of tre
z-expansion is needed. Because of the symmetries in this case, many of
the integrals in Eq. (16) are equal to zero and considerable simplifi-
cation of Eq. (17) results. The set of simultaneous equations for the

n-th’yode in ¢ is as follows:

P o P - p ¢
an = 4p * (ep-1) (2, Algy + boaP3gn}
$ . o - -aP ¢
. bon bip * (er 1) { an A4on + banAeon}
(39) .¢ _ .¢ - P ¢
an = 2 * (e, 1) {bgn Adgn * gy Abgn?
P - P - P - a®
bon = Pin * (er 1) {bon Algn = gy Adgy!
“~

36
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Fig. 9--Geometry of dielectric ring probiem

z _ .2 - z

gg)t %n = %n * ‘Er 1) {agy A8y}
- K2 - z

b b'ln + (er 1) {bon A8°n}

These become the following sets of linear equations:

.

Py [l - (e -1) AL T bgn [(e,~1) A3,0 = af,
{ %q [le,m1) A8T+ b3 T1-(e,m1) A6 ,T = b}
0 ), .

ab [1- (c,-1) A6] - b8, [le,-1) A4, ] = af,

agn [(e,1) A3 0+ b8 [1-(c,-1) AL, ] = bf

X
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.z . . - A2
’ 2on (1 (er 1 A8y, 1 %in

gggl. bgn (1 - (ep-1) A8 = b?n

For a linearly polarized plane wave incident along the ring axis,
only the n = 1 mode in ¢ is needed. This situation represents the ut-
most simplification of Eq. (17). Calculated and measured backscatter-
ing data are compared in Fig. 10 for several polystyrene rings of dif-
ferent radius where £ is taken to be 2.54-j 0.00. Each ring considered
had a geometrical wall cross section 0.100" x 0.100". The scattering
cross section was measured twice for each ring; where only one circle
is evident, the experimental data were in nearly exact agreement for
both measurements. The agreement between the calculated and measured
results is seen to be excellent.

As can be seen from Eq. (16), the formulas defining the coefficients
in the system of linear equations are independent of the dielectric
constant. The dielectric constant appears only in the solution of the
set of simultaneous equations and in the calculation of the far scattered
fields; these two operations represent relatively efficient computer
operations. (The numerical integrations and solution of the simultaneous
1inear equations occupy most of the computation-time. These need not
be repeated for éach new permittivity or loss tangent.) Thus, once the
basic integrations have been performed, it is a matter requiring rela-
tively little additional labor to calculate the effect of the dielec-
tric constant and to include the effect of the loss tangert on the scat-

tered fields. This is an interesting characteristic of the integral

M
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equation approach to homogeneous dielectric scattering problems.

Fig. 11 shows the calculated backscattering cross section versus

(32)

SCATTERING CROSS-SECTION

0.0080
e CALCULATED (INTEGRAL — EQUATION)
0.0070}—  © © © 0 MEASURED °
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0.0030}—
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Fig. 10--Backscattering cross section versus mean
ring radius for a polystyrene ring with a plane,
1inearly polarized wave incident on axis.
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] | a
l dielectric constant for a plane wave incident along the axis of a

}

4 ' ring with an outer radius of 0.5 inches. The effect of the loss
_ ! tangent is also included parametrically.

A comparison of the calculated and experimental backscattering
1 l cross section for TE or TM plane waves incident at an arbitrary in-
cidence angle is presented next. Four polystyrene rings were considered.

Calculations were performed for several incidence angles, out to nearly

l 90°, for each ring. Both TE and TM backscattering patterns were meas- |
ured for all four rings. Figures 12 through 19 show the comparison of
the measured and calculated data. The agreement is seen to be excellent.
l A portion of the small disagreement in the TE cases may arise
from scattering from the support strings; the strings were parallel to
' the incident field in this case. For the TM case, the incident field
l was normal to the support strings and the string scattering was not so
noticeable.
f The number of modes in é required for a particular ring scattering
problem depend on the.ring radius and the propagation angle of the in-
‘ cident field, i.e., the number of incident modes which have significant

l magnitude. In the case discussed here, both the incident modes and the

far-field scattered modes contain factors Jn+1(ua) or Jn_l(ua); the prob-

‘ Jem of de:ermining the necessary number of modes reduces to an examin-
ation of the Bessel functions of the first kind. In the examples pre-
’l sented here, the incident field modes became negligibly small for n >10; !
_ | therefore only ten ¢-modes were required. For more complicated incident

fields and for larger rings, more modes may be required; the exact number

I would of course depend on the accuracy desired.
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It should be noted that the only inherent assumption in the ring
scattering calculation is that the thickness and length are sufficiently
small compared with a wavelength that field variations with o and 2 can
be neglected. Aside from practical probiems such as lengthy {ntegration
times and summations over many ¢-modes, there is nothing preventing ap-
plication of this technique to rings with larger radii 1f the above re-
strictions are kept in mind.

B. Dielectric Tube Scattering

The final situation considered is that of a homogeneous thin-wall
qy11ﬁdr1ca1 shell with a linearly polarized plane wave incident along
the shell axis. Shells up to one wavelength long are considered and
several terms of the z-expansion are required for a good solution for
the field in the tube. Choice of on-axis incidence requires only the

n=1mode in ¢ and the amount of computer storage required i{s consid-

- erably reduced from the arbitrary incidence calculation. The geometry

of the problem is shown in Fig. 20.

In this calculation, all the coefficients given {n Eq. (16) were
retained in the system of equations. A though rapid access computer
storage restrictions limited the maximum z-mode index to two, this was
found to be adequate for the cases considered. For tubes much larger
than one wavelength, however, more modes would be needed.

The calculations and experiments were performed for polystyrene

tubes with an outer radius of 0.500" and a wall thickness of 0.100".

The frequency was 6.23 GHz, the dielectric constant used in the calcu-

o o PRRSREEE
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DIELECTRIC TUBE

Fig. 20--Plane wave incident along dielectric tube axis.

lations was € = 2.54 - j0.00 and the tube lengths ranged fram 0.100"
to 1.960".

The experimental data, the averaged data and the calculated back-
scattering cross section are given in Table I. A comparison of the
caculated and measured scattering cross section is shown in Fig. 21.

The agrzement between fhe calculated and measured cross sections
again is.exce\1ent. .The increasing disagreement for the larger tubes

undoubtedly arises from the three-mode 1limitation in the z-expansion.
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CHAPTER VI
CONCLUSIONS
Accurate calculation of radome boresight error is a challenging
Rigorous series solutions of the boundary-value problem are

task.
usually ot practical for the general radome shell and the accuracy i

of present-day approximate methods of radome analysis 1S generally

An essentially rigorous technique for application to
The first step in

not known.
radome scattering is the integral equation method.

the development of an integral equation analysis of radome shells is

discussed in this report, namely the calculation of the backscattering

from thin-wall, finite-length, circular cylindrical shells.

The unknown function in the integral equation is the field within

the dielectric shell. The integral equation derivation and the method

of solution of the equation by the point matching technique are dis-

cussed. The field within the dielectric shell is found in terms of

expansion coefficients in a double Fourier series over the shell. The

far scattered fields are determined by usinyg the calculated total field

and the equivalent current concept.

The technique is applied to calculation of the backscattering of
a linearly polarized incident wave by dielectric rings and tubes. A i
comparison of the calculated and measured backscattering was made for

the following three particular cases: |
(1) a thin, short, homogeneous, dielectric ring for axial J

! incidence
_ {

' 54
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(2) a thin, short, homogeneous, dielectric ring for arbitrary

incidence with TE and TM polarization

(3) a thin-wall cylindrical shell for axial incidence.

The dielectric material for each of the above cases is polystyrene.
Agreement between the calculated and measured results is excellent in
all three cases.

The general numerical integration procedures, the far field in-
tegration formulas, the experimental methods and the computer programs
used are all discussed.

In addition, a useful expression is derived for the electric field
at the center of a rectangular parallelepiped of current density. This
expression is needed when integrating throughout a volume of source
current density to calculate the field at a point within the source
region,

The numerical technique used seems to be particularly suitable for
treatment .of arbitrary shaped shells of revolution which could be con-
sidered to be made up of a large number of dielectric rings. Longitu-
dinally inhomogeneous bodies are also amenable to analysis by the ring-
subdivision method; each ring would be homogeneous, of course, so that

this approach would give a piecewise uniform approximation to the in-

homogeneity being considered.

In summary, excellent results have been obtained by applying an in-
tegral equation technique to calculation of the plane wave scattering from
thin-wall dielectric cylindrical shells. This work is significant to the
general radome scattering problem for two reasons. First, the excellent

theoretical and experimental agreement implies a high degree of accuracy

ey
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obtainable with the method. Second, 3 workable mode of application of

the integral equation technique has been established and this approach

can be extended to more complex dielectric shell configurations and to

more general fields.




APPENDIX A
EXPERIMENTAL METHODS AND EQUIPMENT
Measurement of the backscattering cross section of the rings and
tubes was accomplished using a one horn monostatic backscattering
cross ection system operating in a large microwave darkroom. A block

diagram of the measurement system is shown in Fig. 22. .

A measurement is made by following the steps outlined. The three-
stub tuner is adjusted to create a load mismatch precisely balancing out
the background return from the darkroom when no target is present. A
reference cross section level is then established by using a standard
sphere with known cross section as the target and recording the back-
scattering return., The sphere is then removed, the target is placed
in position and the target return is recorded. The absolute value of
the target cross section is then found by measuring the relative levels

of the target and sphere and calculating the target cross section

directly from the known sphere cross section. In all cases the reference

sphere is chosen to provide a reference level of the same order of mag-
nitude as the target cross section.
The linearity of the system was checked by comparing the measured

levels of two reference spheres. For the range of cross sections con-

sidered, the relative sphere levels were within fo.l dB of their known
relative values. This is considered to be very good. The wide range

Tinearity (30 dB range) was also checked using a precision attenuator;

57
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CRYSTAL HORN -4
\ _ STRINGS
MATCHED| |3 sTus HYBRID E-H
LOAD TUNER . TEE TUNER
20 dB
om%cnomu. SA
COUPLER ANTENNA
| POSITIONER
ISOLATOR MODEL 51031
KLYSTRON
FXR DYMEC
UNIVERSAL OSCILLATOR
KLYSTRON SYNCHRONIZER
SUPPLY MODEL 2650 A
28158
SCIENTIFIC - SA
ATLANTA (SA) RECTANGULAR
WIDE RANGE RECORDER
RECEIVER SERIES 1540
SERIES 1600
SA
POSITIONER
CONTROL
SERIES 4100

Fig. 22--Block diagram of moncstatic cross section
measurement app.r:Lus.
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l this check gave relative levels within 0.1d8 of the attenuator values.
For the case of the on-axis scattering of the thinnest, shortest
rings (Fig. 10), the cross section levels were somewhat low to obtain
good "far zone" scattering results. As pointed out by Kouyoumjian and
Peters,[ 29] however, accurate cross section measurements do not require
that the target be in the far zone of the antenna but only that the
incident fields have plane wave properties in the vicinity of the tar-

get and that the antenna-target interaction be very small,

The thin, short rings were measured by suspending them on strings

in the horn mouth with the center of the rings on the horn axis.

Kouyoumjian[ 307 shows that in the neighborhood of maximum points along
a horn axis, the field is nearly a uniform plane wave. The axial field
variation of the measurement horn was probed using a 0.25" sphere. For

the thin rings, the axial incident field variation over the rings was

found to be less than 0.5 dB and the horn-mouth location was found to be
very close to a maximum point. For small rings and small cross sections,

antenmna-ring interaction can undoubtedly be neglected. Thus, reasonably

good plane wave scattering measurements are expected. No quantitative

as i el [ =Y Y

estimate of the errors has been made, however.
Measurement of the ring patterns and the tube c¢ross sections im-
poses a larger axial extent of the target than can be tolerated for a

horn-mouth measurement. The larger cross section, however, allowed

use of the more standard far-zone cross section measurement. Observed

repeatability and linearity were again very good.

- W W o




APPENDIX B
COMPUTER PROGRAMS

A discussion of the computer programs used to calculate the ring
and tube fields and backscattering cross section is presented in this
appendix. The programs are written i{n the Fortran IV language for
processing on the Ohio State University IBM 7094 computer.

Flow charts outlining the computations are given for all the pro-
grams used. Definition o7 the input and calling parameters and a com-
plete statement listing of the programs are also included.

A. Arbitrary Plane Wave Incidence on a Dielectric Ring

The program flow chart is shown in Fig. 23 and the statement list-
ing of the computer program is given in Fig. 24. The input data card

variables and the subroutine calling paramenters are defined below.
(1) Cards needed once for each run:

Card Number 1 : Format (110, 7F 10.5)
Columns Quantity Description
1-10 NCASE NCASE = the number of
different rings to be
calculated.

(2) Cards needed once for each different ring:

Card Number 2 Format (110,7F 10.5)
Columns ' Quanti ty Description
(t;;gt-adjusted) NX NX = the maximum g-mode
index to be used
11-20 Al Al = tie mean ring

radius in inches.

60
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Columns

21-30

31-40

41-50

§1-60
61-70
Card Number 3

Columns

1-10
(right-adjusted)

11-20

Quantity
DI

WI

FREQ

Re(ER)
Im(ER)
Format (110,7F 10.5)

Quanity

NANG

REF

Description

DI = the radial thickness
of the ring in inches.

WI = the width of the
ring in the z-direction
in inches.

FREQ = the frequency in
gigahertz.

ER = the complex relative
dielectric constant of
the ring material.

Description

NANG = the number of in-
cidence angles to be
calculated for the ring.

REF = the reference

cross section for calcu-
lation of the theoreti-
cal cross section in dB.

(3) Cards needed once for each different incidence angle for each ring.

Card Number -4

Columns

1-10
11-20
21-30
etc.

Card Number 5

Columns

1-10

Format (8F 10.6)
Quantity
B(I), I=1,10

Format (8F 10.6)
Quantity
TH

Description

B(I1) = the I-th order
Bessel function of the
first kind. Used in
calculation of the in-
cident field Fourier co-
efficients for a partic-
ular incidence anqgle.

Description

TH = the incidence angle
for one calculation for
one ring.
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The calling parameters for the NRCELL subroutine are defined as
follows:
M = the number of subcells along each s%de of the larger cell

(a total of M3

subcells)
RC,PC,2C are the p,¢,z coordinates respectively of the larger
(near) cell

AL = 0.0

NX1 = the maximum ¢-mode index to be used plus 1.

XM,YM,ZM = the rectangular coordinates of the matching point for
which the NRCELL subroutine was called.

AA,88,CC = the incremental dimensions of the large (near) cell in

the p,4 and z directions respectively.




Main Program

S

Read (NX,Al,DI,WI,FREQ,ER)

¥

[ Read (nmwg,REF) |

Y

Calculate Dimensions in Wavelengths

Y

Initialize all integrals and coefficients
to zero

1000 continue

Y

Calculate the number of cells

¥

Oivide ring into cells with angle subtended
at ring center equal to:
DPHI = ( »- DEL}/(No. of cells).

3

1001 continue

¥

Calc. contribution to integrals of parts
- of ring more than 4 cells away from the
"singular cell." Do for all ¢-modes

Y

200 continue

Y

Calc. contribution of 4 cells closest to
singular cell and add to previous results.
Do for all ¢-modes. Uses NRCELL subroutine

Y

250 continue J

¥

Calc. the contribution of the singular cell
to the integrals.

v®

Fig. 23--Flow chart, ring scattering computer program.
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300 continue

Y

Add the singular cell contribution to
the appropriate coefficients. Do for
all s-modes.

Y

Punch out (on cards) the coefficients
in the system of equations. 0o for all

¢-modes .
Y

400 continue

Y

Do 800 N = 1, NANG

Y

Read Bessel functions and incidence

angle.
Y

1002 continue

Y

Calculate incident field Fourier
coefficients.

2

35 continue

Y

Solve system of equations for Fourier
coefficients of the total field.

Y

500 continue Ai]

Y

Calc. the far scattered fields for all
¢-modes .

Y

600 continue

Y

Calc. the total scattered field as the
sum of the fields due to each of the

s=modes .
v®

Fig. 23--(continued).
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610 continue

-

Calculate and write out the backscattering
cross-section

Y
800 continue
3
END )

I NRCELL SUBROUTINE |

Calling parameters (M,RC,PC,2C, AL, NX1,
XM, YM,2ZM,AA,BB,CC)

Y

Initialize integrals to zero

Y

50 continue

Y

Divide the cell into M3 subcells and cal-
culate the total cell integral as the sum
of the contributions of each of the
subcells,

]
100 continue

L 4
END

Fig. 23--(continued).
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VANDOERENs R JOBN FGU921 3

1
2
22
3
'y
7
18

SEXECUTE 18J08
slaJ08
SIAFTC MAIN NODECK

FORMAT (11047F10e%)
FORMAT (15X.21%)
FORMAT (S5X+8F1448)
FORMAT (aX,21H REST OF RING RESULTS/aX+14FBe4a)
FORMAT (6Xe21H SINGULAR CELL RESULT/10X+aF8e4)
FORMAT (5F15.8)
FORMAT (BF10.6)
COMPLEX A1(10)14A3(10)4A4(10)1+46(1014AB(10)
COMPLEX AT(10)eBT(10)1¢AP(10)+8P{10)«ALI10)eBLI10)
COMPLEX AIT(10)eBIT(1014AIP(10)¢8IP(10)eAILI10)eBILIO)Y
COMPLEX CJUsCL+ETH(10)EPSI10)+ETHT EPST
COMPLEX XP«P+Q
COMPLEX DETER
COMPLEX VI110)eV2(10)sV3(10)+Va(10)sVSL10):V6L110)eV8(10)
COMPLEX VI110)+V11(10)eVIEL10)
COMPLEX P1(10)sP2(10)1¢P3(10)+Pa(10)1:PS(10)1+P6(10)sPT(10)PB(10)
COMPLEX PO(10)«PI0(I0)eP11(10)¢P12(10)+P13(10)4P14(10)P15(10)
COMPLEX P16(10)
COMMON P} +P24P3«PQePSPEPTPBPIPI0PL1:P12:P13¢P14P15:P1 6
COMPLEX AITM(10)eBITMIIN)¢AIPM(10)«¢BIPMI10)¢AILMI1I0)eBILM(10)
COMPLEX ATM(10)+BTM(10)«APM(10)+BPM(10)+ALM(10)eBLM(10O}
COMPLEX ETHM(1D)+EPSM(10)sETHMT+EPSMT
DIMENSION B(10)
COMPLEX EE
COMPLEX XPP«XPQ
READ (Ss1) NCASE .
NCASE IS THE NUMBER OF RING CASES TO BE RUN.
DO 801 NCASs] «NCASE
READ (Sel) NXeAleDIoWIFREQIER -
NX 1S THE MAXIMUM PH]-MODE INDEXe
Al= MEAN RADIUS OF THE RING IN INCHES.
Dis THIAKNESS OF RING IN RADIAL DIRECTION (INCEWNES).
WUsWIDTH OF RING IN Z~DIRECTION (INCHES).
ER = RELATIVE DIELECTRIC CONSTANT OF RINGe
FREQ = FREQUENCY IN GMZ.
READ (S+1) NANGREF
NANG 1S THE NUMBER OF INCIDENCE ANGLES FOR A GIVEN RINGe
REF 1S THE REFERENCE CROSS-SECTION FOR THE PARTICULAR RINGe
AL2040
NX1sNX+1
Y00s= 11.8028/FREQ
Yils YOO/SQART(ER)
A=Al/YO0O0
D=D1/Y00
waswl/vY00
WAD=6428319/Y00
WAR5,283519/Y1)
A 1S THE MEAN RADIUS OF THE RINGe
D 1S THE THICKNESS IN THE RADIAL DIRECTION OF THE RING.
W IS THE WIDTH OF THE RING IN THE Z-DIRECTION.
ALL THE ABOVE ARE IN TERMS OF FREE SPACE WAVELENGTHS
DO 32 J=1.10
V1(JI=(0ee00)
v2iJ)Ie(0ee0e)
V3A(JIn(0eeD0)
Va(JI=(0es00)
VELJIR(Dseded
V6(JIn(0esT0e)
VB(J)x{0es00e)
VOUiJ)Is(NeeDo)

Fig. 24--Ring scattering computer program

statement 1isting.




32

403

1000

1001

e o o 4 Mhmsn ohs AR T L et b e e M oo Sl and dath ittt

VI1(J)1=(0ev0s)
V16(J)=2(0e104)
AT(J)= (00404
BT(JI®(0ee04)
APl J)=(0e¢04)
BP(J)2(0e40s)
ALLtJ)I=(0esQa)
BL(J)I= (0604
AlT(J)={0ee04)
BIT(J)=(0es04)
AIP(J)I=(0ee04)
BIP(J)I3(0e204)
AlLtJ)I=n(0ee04)
BIL(J)Y2({0ee04)
ETH(J)=2 (06404
ERPS(J)=(04¢06)
ETHM(J)3(0e404)
EPSM{J)IR(0ee04)
CONT INUE
ETHT= (04 ¢0eY)
EPST2(0e+00)
ETHMT= (04404
EPSMT=2(0e404)
DO 403 IND=1.NX1
READ (S5¢16) J«Al1FREQ

READ (S¢17) AL(J)AI(JI AR (J)IIAG(J)ABLY)

CONT INUE

GO TO 40!

CONT INUE
N=(3e14159%A)/0.,01
DEL=0.01/A

67

THE CELL FROM -DEL TO +DEL IS ACCOUNTEOD FOR ANALYTICALLY.

IF (NeLTe30) N=30

TésN
OPHI=(314159-DEL)/T6
DVaW#DRARDPHL /6428219
WTT=((W/2)%%3)%#0,666667
CONTINUE )

DO 200 K=20.N

Ti=x
PHIDEL+DPH1/2++T1#DPMI]

- C=COS (PH)

SeSIN(PM)
XsA®(]e=C)
Ye=A#S

Z-D.o

RESART (XAX4YHYLZHZ)
AR=6+28 31 9%R
ARSsAR®#2
RI=2R##3
RE=RERS

PR=a (~1 «+ARS)I /R
Pla=AR/R]
PaCMPLX (PRP] )
QR= (3+~ARS)I/RS
QI3 #AR/RS
QeCMPLX(QRQ1)
XPeCMPL X (COS(AR )« =SINIARY)
XPPaXP#*P
XPQaXP*Q

DO 60 NN={WNX1
T1sNN-1
SN=SIN(T]#PH)
CNSCOS(T) #PH)

Fig. 24--(continued).
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CNDsCN#DV
SNDaSN#OV
V1 (NN)EV] (NNY +CHCNO#XPP
V2(NN)SV2 (NN)+S#SND#XPP
V3INN)2VI(NN) +XEXRCRCNDRXPQ
VA (NN)2VaA (NN) +X#X*S % SND#XPQ
VS INN) 2VS (NN) $ X2 Y 2#S $CND#XPQ
V6 (NN)2V6E (NN ) +X#Y2CRSND#XPQ
VBINN)I2VB(NN) +YRYRSESNNEXPQ
VI INN) &V (NN} +Y# Y #C#CND#XPO
V11 C(NN)I=VL1 (NN )+CND#XPR =
VI6INN) 2V 16 (NN)+WTT #CNO#XPQ

60 CONTINUE !

200 CONTINUE !
00 201 J=jyeNX) !
WRITE (6410 o
WRITE (643) VICI1eV2II10¥310)eVAII)eVSII)eVELI) sVBII) eVI(I)eVITLd) ’

201 CONTINUE \
XM= A r
YM=0,0 H
ZM20,0 "
AA=D i
8B=8, #OPH] ‘
cCaw )

c DOWN TO 250 1S THE CALCULATION FOR THE & CELLS NEAREST THE ###
c ##% SINGULAR POINT ( THME OBSERVATION POINT)e

00 280 U=1.4
Ting=-\
DPHS, #0PH

PH] aDEL+DPH/2 4+ T1#DPH
C=COS (PH])
SsSIN(PHI)
XCsA#C
YCsA#S
ZC=0.0
IF (JeEQsl) M=220
IF (JeEQe2) M=10
IF (JeEQeI) M=p
IF (JeEQel) Mag
CALL NRZELL (MAePHI+ZCoAL JNX1 ¢ XMeYMZMAABBCC)H
00 202 JJslNX1
WRITE (6423 JeJJ
WRITE (8:22) P1(JJ)1P2LIIIePALIIIPR(JIIPSIII)PEIIVYPT (IS PBLY
2J0)1ePYLIINIPI0tINI P IUUIPI2IIVIePITIIN)IPIAIIII P IS(IJIPLETIS)
(ARG NITATANMNELE LR RVN})
V21JIJ)IsV2(3))+P2(JJ)
V3(JIrsVvI LI +PIIY)
VRLI(JJI2VA LI ) +PAIII)
VSI{JSJIsVS (I +PS(JIJ)
VE(JIJISVE(JIJY+PELII)
' VBLJIJIaVB(JUY4PB(JJ)
VOLUJIBVI (I +PI(IY)
VI11(JI)eVIT(UUI+PL 1 (JJ)
VIS(INIsVIELIN+PIGLIN
WRITE (6+2) JJ
WRITE (8:22) VI(JIJYeV2UUIIeVILIIIVATIII e VEIID) I VELIIIY) VB II ) VILY
BIIVILT(IIIeVISIID)
202 CONTINUE
280 CONTINUE [
(o FROM HERE TO 300 IS CALCULATED THE SINGULAR CELL CONTRIBUTION.
A12D/20
81 =A%DEL
Cl=w/2,
€QsSART (A1 AL +R12B) 4+C1#CY1)

Fig. 24--{continued).
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T2224/3414159
STaT2#{ATANI(AI#C))/(D1#SQ) I+ATANI(ALI#B]1)/(CI#S0))I~1,
SPaT2# (ATAN{ (DI #A1)/(C14SQ)II+ATANI(BI#CL1)I/(A1#5G)) )~], J:
SLET2#(ATAN((C1#B1)Y/(A1#SQ)I+ATANI(CI®AL)/7(B1I#S0)))~1, '
. ... 300 CONTINUE L - o L
i 4 ER 1S THME RELATIVE DIELECTRIC CONSTANT OF THE NIELECTRIC RINGe
00 400 U=t «NX1
AL (L)ISVELJSIFVILII+VEIID)+ST
AB(JI=V2(J)=Va(II+VEIY)
AQ(JIBV2(JIeVEIJISVALY)
ASLIISVE(IISVD (JI=VB(I)+5P L
ABtLYIaVIL (JI+VIELII+SL
WRITE (648) JeA1(J)IA3LIIAGLI)IAB(J)IAB(J)
16 FORMAYT (110¢7F106)
17 FORMAT (BF10+6)
PUNCH 16s JeAIFREQ
PUNCH 17s A1(JU)A3(JIAG(J)IASLIJYABLY)
400 CONTINUE
401 CONTINUE
DO 800 N11=)NANG .
4 READ (5+15) [(B(J)sd=1410)
[ THE B«S ARE BESSEL FUNCTIONS USED IN THE INCIDENT FIELD CALCe
___READ (%e15) TH
1002 CONTINUE
STESIN(3414159~TH)
CT®C0S(3:14159=TH)
. THD=TH#57,3
c DOWN TO 35 IS CALCe OF THE INCIDENT FIELD COEFFICIENTS.
AIT(1)=(00e400) .
B17(1)2(0s406)
AIP(1)1=~MPLX (Qse~B(2))
8IP(1)1=(0e90s)
AITM(1)3=CTRAIP(])
BITM(1)x(0eeDs)
ATPM(1)2(000¢00)
T BIPM(1)%(0esDe)
AILMCL 1 m=STECMPLX(B(]1)¢0,4)
BILM(])s(0aal0¢)
0O 35 JUsmi.4
J1u2RJ
J1P1sJ1 4t
JiMisJ] -1
AIT LI )eCMPLXT(BIJIMII+BIJIIP1))e0e)
BIT(J1)I=(0se¢04)
AlPIJ1 )% (0404
BIP(J1)I=CMPLX ((=B(JIMLI+B(JIPL1))e00)
 AITM(J1)2(0ee80)
BITM(J1 1z=CTR#BIP(J1)
AIPMII1ISCTRAIT(J1)
BIPMIJLI I=(0es0e)
AILM(J1)8(0ee0s)
BILMIJ1)Is=CMPLX(Oee2#STRB(J1})
JEa2RJ41
J2P13J2+1
J2Mis J2=]
AlT(J2)2(0e¢00)
BITIJ2)SCMPLX (oo (B(J2ML 1+B(J2PL I 1)
AIP(J2)2CMPLX (Oee (B(U2M] ) =B (J2PT1 1))
BI1P(J2)2(0ee00e)
AITMIJ2)=~CTHAIP(J2) )
BITM(J2)2(0ee06)
AIPMIJ2)2(0e0e00)
BIPMIJ2)sCTARIT(J2)Y
AILM(J2)n=CMPLX(2#STR#B(J2)¢00)

Fig. 24--(continued).
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. BILMIJ2)2(0,s404) .-
35 CONTINUVE
c FOLLOWING 1S THE SOLUTINE FOR THE FOURIER COEFFs OF THE FIELDS.

EESER~1,
DO 500 J=1eNX1
OETI‘l--EE'Al(J))’(l.-EEDAbtJ))#EE'A3(J)‘EE'A4(J)
AT tAITIV) R (1 +~EERAB(J)I+BIP (JIHEERALI))/DET
BRI (BIPIJIR{1,~EERAL(IIVI=AITIJINEESAQ(J))/DET
APLUItAIP(J)# (1~EERAL (U I+BITILIHEERAG(J) ) /DET
BTN DIT(IIR(1~EERFASIIII-AIPIIIREERAILIYI/ZDET
AL (J)=10ee04)
BL{J)IZ(0se00)
ATMUNIR(AITM(J)I# (1o ~EERAG(J) I+BIPMIJIREERAI (V) ) /DETY
BPM(JIS(BIPM( IR (1o ~EERAL (J)I=AITMIV)IREERAG(J))/DET
APMIJ)S {AIPMI U R (] o~EE#AL (J))4BITMIJ)IREERAL(J)Y/DET
BTM(J)I=(BITMIV)IN (] ,~EERAG(J) )-AIPM(J)IHEERATIV) Y/DET {
CALMEJIEATLM(U) /t1e-EERAB(J)Y) o o _ l
BLM(J1=BILM(JY/ (1 +-EE#AB(J))
8 FORMAT (BXe1100/¢5X+6F1%5¢Be/¢5Xe8F15.84/) . L i
WRITE (6+18) )
WRITE (648) JsAITINBITINIJAIP(IIBIP(IIAILII)eBILIY) .. /
WRITE (668) JeAT(J)eBTIS) AP {J))BPIJYIALIJYeBL (V) ’
WRITE (6.19)
WRITE (648) JOA!TN(J)oBlTM(J)nAlPM(J)oBlPM(J)-AlLM(J).BllM(Jl
WRITE(G:8) JeATMI L) sBTM(U) sAPMIJ 1 BPM(J) ALMID)eBLM(Y)Y
300 CONTINUE
[ THE FOLLOWING 1S CALCe OF THE SCATTERED FIELDS,
CJ=(0erl0)
C ETH(L 1m=2.%B(2)RCTRCINAT( 1 )142.#8 (1 )1 #STRAL(])
EPS(118=2,#B(2)#CIRAP (]
ETHM( ] )22, 8B (2 I1#CTHCIRATMI] ) +24#B (11 RSTRALM(Y)
EPSM{ 1 1s=2:R8B(2)8CURAPM(L)
00 600 Js) )
J128J
IF (J1eEQe2¢0RJ16EQe6:0RsU14EQ010) Cla=CJ
14 CchEOoC.OR.Jl.EQoGl Ci=aCJ
JMsJl =]
JPsJL 41
JMM e M- |
JPPa R4
Slai=)e)ne)
ETH(JP).S!’C}.(((~AT(JP)—BP(JP)"B(JPF)+(AT(JP)-BP(JP)3.B(Jl)l*CT#
B2.FAL (JP)IH{=C I #BIIP)IAST)
EPS LIPS IRCI#((BTIIPI=AR{IP ) IRB (IPP I+ (BT (URPI+APIIP)ISB (UL )Y
WRITE (649)
WRITE (8¢B) JPETHIJUP)ERPS(JP)
9 FORMAT (BX IBHIPETHIUR) EPS(JP )}
N !TNN(JP).SIQC]Q(((-ATM(JPl‘BPM(JP’?‘B(JFP)#(ATMIJP)'BPM(JP))'B(Jl)
2INCT42RALMIIP IR (=CUI#BIIP)SST)
EPSM‘JP)ISIQC]Q((BT”(J”)-APM(JP))’B(JPP)#(BTN(JP)#‘PM(JP))QB(JI))
. WRITE (8¢900)
900 FORMAT (SX20HIPETHM(UR)+EPSMIJP))
WRITE (648) JPETHM(JUP) EPSMIUP)
J2s(28))~1
JMs Y2~1
JPe Y241
JMMa JM=1{
JPPe P+ ]
(14 lJZan.l.OﬂbJZ.EQoleROJZOEOOg) C2s=1,0
IF (J2¢EQe2e0R4J2:EQe7) C22140
J2Pa(J2+1 )2
Siu(=1¢)%82P
ETH(JIP ) 2SI #C28 (((BT(JPI1=AP(JP )1 #R(JPP 14 (~BT(JP)~AP(JP}1)8B(J2))8CT+
22.%0L (UP)#CUNB(IPINST

—— -

Fig. 24--(continued).
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EPSLUP)I=SIRCRAMILAT(JPI+RP (UP ) IRRIJIPP I+ (AT IUP)I=APR( P IXA(J2))
ETHMIUP =S #C2%( ((BTMIUPR)=APM(JUP ) 1#A(JIPR )1+ (=-BTM(JRP)-ARM(JP ) ) #8(J2)
SIRCTH2 o ABLMIIP) RCURBIUP)IRST)

EPSMIUP I=SI#C2R ((ATM (IR I+RPM(JUP) IRB(JPP I+ (ATM(UP)=BPM(JP ) 1 #R (J2))
WRITE (8+10)

FORMAT (SX+18HJPETHI(UP )Y EPS(JP) )

WRITE (6+8) JUPLETHIUP) EPS(UP)

WRITE (64900)

WRITE (6481 JUPETHMIJIP) ERPSMIJP)

CONT INUE

NO 610 Jz1e192

ETHTSETHRTHETH (D)

EPRST=EPST+ELS ()

ETHMTZE THMT+E THM( Uy

EPSMT2ERPSMT+ERPSM{J)Y

CONT INVIE

FORMAT (SXe33HTHE FOLLOWING 1S FOR TE INCIDENCE./)

WRITE (6.18)

WRITE (6+11) ETHTWEPST .

FORMAT (10X 10HE=THETA 2 42F12e6¢/410X+BHE=PS1 = «2F1246)
FIx8.#(3,10159#85 )% ((DRNKAIRR2)R((CABS({1«~ER) A2}
SIGTHaFI# ( (CABSIETHT) 1##%2)

SIGPS=F1I# ((CABS(ERST) 1%%2)

SIGTHD=10 *ALOGIO(SIGTH/REF )

SIGPSD=10+*#ALOG10(SIGPS/REF )

WRITE (6+012)

FORMAT (/+5Xe42HTE SAME POL . RACKSCATTERING CROSS SECTION.)
WRITE (6413) SIGP5+SIGPSD

FORMAT “(1SX+BMSIGMA = «F14e8+15Xe124SIGMAIDB) 3 +Fl4a.8)
WRITE (6+34)

FORIMAT (/+«SX¢A42HTE OPPe POL s BACKSCATTERING CRNOSS SECTION,)
WRITE (64133 SIGTH«SIGTHD .

FORMAT (SX«33HTHE FOLLOWING IS FOR TM INCIDENCE«/)

WRITE (6419)

WRITE (5111) ETHMTERPSMT

S{GTHaF [ R {{CABS(ETHMT ) )82

SIGPS=F 1 # ((CABS(EPSMT ) ) #82)

SI1GTHD=10+#ALOGIO(SIGTH/REF)

QIGPSDE10+#ALO0GI0(SIGPS/REF )

FORMAT(/+8X42HTM SAME POLe BACKSCATTERING CROSS SECTION.)
WRITE (6+20)

WRITE (6+13) SIGTH«SIGTHD

FORMAT (/BX+42HTM OPPs POLe BACKSCATTERING CROSS SECTION,)
WRITE (6+21)

WRITE (6413) SIGPS«SIGPSO

WRITE (6413) ADe#eFREQTHDERWREF

ETHTS(0e40s)

EPSTs(0eeCa)

ETHMT=(DeeDe)

EPSMTs (0ss04)

CONT INUE

CONT INUE

STOP

#ND

¢ cC NOOECK .

SUBROUT INE NRCELL (MsRC«PC+2ZC eALINX] ¢ XM YMeZMIAA BB CC)H

NX! (S THE MAXIMUM PH{-MODE INDEX PLUS 1.

RC«PCeZr DEFINE THE CENTER OF THE NEAR CELL

XMe¥YMeZM ARE THE MATH PQOINT COORD!NATES.

CELL DIVENSIONS ARE RaAA, PHI=fiBs L=aCCs

O] THROYGH P16 ARE THE VARIOUS INTEGRALS.

M 1S THE NUMRER OF SURCFLLS ALONG EFACH ENGE OF THE MAIN CELL.
MEMEM IS THE TOTAL NOe OF SUHCELLSe M IS EVEN

COMMON /XXX/ ¥M(10)eZML]ID)

Fig. 24--(continued).
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COMPLEX XP«P«Q

COMPLEX P1{10)¢P2117)¢PAL)1N)PA(10)PES(10)1:PE(101sPT(10)1PBL10)

EE TP

COMPLEX PG(103P1MNE10)+P11(10)sP12(10)+P13(10)4P14(10)

COMPLEX P1S(10)4PL16LID)

COMMON P11 P24PA+Pa s PSePEP?PEIPOePI 0PI 14P12:P13:P1APISP16

COMPLEX XPP.XPQ
REAL L\ S

NO S0 Nz «NX)
OI{(N)E(DesDe)?
P2(NIZ(Tee0o
OIINIZ(Ne D)
O4a(N)=(DaeNe)
BPEINIB(NeeD0e)
PEINI2(0aede)
PTINIE(DJeeDde)
BBI(N)I=(Qee00s)
DO(N)x(0Csede)
PIO(NI=(QeeNs)
P11(NYIa(0eeNe)
BI2(NIZ(QaeDe)
P13I(N)IZ2(0ee04)
P14IN)I2(QeeDe)
B1S(NYZ{Qee0¢)
P1E6INYIZ(Te004)

CONT INUE

Ti=™M

T2%14/2

AsAA/T)

a=88/T1

c=CCrTt
RADS2RC~(T2=-0,5Q01 %A
PHISSPC=(T2-N%00)1 %0
§ SE=(T2-0.%N0)5C
DO 100 121 eMm

Ti=l-}
OHI=PHIS+TI#D
C1=COS(PHLY
S1=2SIN(PHI)

DO 100 Jsi M

Tiag=-] °
RAD®RADS+T1 %A

00 100 Ka)l M

TisK=

L LSeT18C
XeXM=(RANSCOS (AL )=t #SIN(AL ) ) #COSIPM])
YaYM= (RADH#COS (AL Y=L #SINCAL ) I #SINIPHT)
2sZM=(2~ 4 _2#COS(AL))
RYSQRT IXEXIYRYIINZY
R3IsRe8)

REsResS
ARS6+281194R

ORe (=] s +ARMAR ) /R3]
Pis«-AR/RD
DaCMPLXPR«PL )

QR* (30 ~ARBAR) /RS
O1=23.0AR/RS

QaCMPLX (OR«GL Y
AR=RAD*~GCS (AL
DY=ARRISASL /6428319
APsCMPLX(COSIAR) s =SIN(ARY S
XPPsXPAD

XPQueXP#Q

00 100 N=teNX1
T22N~-1

Fig. 24--(continued).
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100

SDATA

CN=COS(T2%#PH1)
SNaS IN(T2#PH] )
CNDsCN#DV
SNDsSN#DV

01 (N)=P] (N)+C 1 #*CND*XPP
R2(N)=P2(N)I+S ] #SNO*XPP
PIINI=P ) IN)+X#X#C ] #CND*XPQ
D4 (N)=P4 (N)+X#X#S | #SND*#XPQ
PR I(N)EPS(N)+X#YRS] #CND#XPQ
PG INISPEIN)+X#YHC] #SND#XPQ
DTI(NISPTIN)+X#ZH#CNDRXPQ
BHIN)=PB (N)+YRY#S] #SND*XPQ
BY(N) =P (N)+Y#YH#C] #CND#XPQ
D10(N)I=P1O(N)+Y#ZESND#XPQ
B11(N)I=P1] (N)+CND*XPP
DI2(NISPL2IN)+Z#X#C ) #CND#XPQ
B3 (N)I=PII(N)+Z#XRS | #SNN#XPQ
D14 (N)2P14(N)I+ZAYRS] #CND#XPQ
DISINI=P1S(N)+Z#Y#C | #SND#XPQ
PIO6I(NIZP 16 (NI +Z#ZHCND#XPQ
CONT INUE

RETURN

END )

9 0.7%0 0e100 04200 6.030

Fig. 24--(continued).
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B. Tube Scattering with an Axially Incident Plane Wave

The flow chart of the basic operations is shown in Fig. 24 and the
statement listing is given in Fig. 25. The input and calling parameters
are defined below.

The data cards needed for each run are as follows:

Card Number 1 Format (215,7F10.5)
!
Columns Quantity Description
i-5 NNN NNN = the maximum g-mode
(right adjusted) index (NNN = 2 for on-
axis incidence)
6-10 MMM MMM = the maximum z-mode
(right adjusted) index.

11-20 A A = the mean ring radius
in inches.

21-30 T T = the tube wall thick-
ness in inches.

31-40 TL TL = the total tube

i length in inches.
41-50 FR FR= the frequency in
gigahertz,
51-60 Re(ER) ER = the complex relative
dielectric constant of
the tube material.
61-70 Im(ER)
Card Number 2 Format (1115)

Columns Quantity Oescription

1-5 J7 JT = the total number of
(right adins~zd) rings into which the

shell is divided.
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; 75 f
. Columns Quantity Description
' 6-10 JZ(I% JZ(I) = the index of the
11-15 Jz(2 1-th matching ring.
16-20 J2{3) There will be 2(MMM) + 1
. . matching rings. _

(right adjusted) |

F., - e e e
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The calling parameters for the RING subroutines are defined below:
NX = the maximum ¢-mode index

MX = the maximum z-mode index

A = the inner radius of the tube in inches
21 = the z-coordinate of the center of the particular ring
(1n waelengths)

AL = 0.0 (alway%)

T = the ring thickness in wavelengths

TL = the total tube length in wavelengths i

DL = the length of the particular ring (in wavelengths)

The calling parameters for the NRCELL subroutine are defined
below: '

M = the number of subdividions of the large cell along each side.

There are M3 total subcells.

RC,PC,2C = the ¢,¢, z coordinates, respectively, of the center of ?
the large cell.
AL = 0.0 {always)

NX1 = the maximum ¢-mode index plus 1.
XM,YM,ZM = the rectangular coordinates of the match point for
a given calculation.

AA,BB,CC = the large cell dimensions in terms of the polar coordin-

o ates, p, ¢, z respectively.
The function FL(Z) gives the distance along the shell (tube) as a

function of the z-coordinate of the point on the shell. This generalized
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function approach is used in anticipation of the general case when the
arc length along the shell will be a more complicated function ~f z such

as a polynomial with several terms.




R el e

ity

MAIN PROGRAM

| Read (NNN,MMM,A.TL,FR.ERY]

[ Read (97,02(1))|

[ﬁtaIc. shell dimensions in wavelength§J

T

Calc. z-coordinates of the matching rings
on the shell

T

[ Initialize integrals to zero]

Use the longitudinal tube symmetry so
integration is needed for only half the
tube.

Calc. the total integrals at each matching
ring at ¢=0 by calculating for each ring
(using ring subroutine) and adding the con-
tributions of all the rings at each match

point.

50 continue

Calc. the coefficients in the system of linear

equations and put in matrix form.

)

Calc. the incident field coefficients for the
N=1 ¢-mode and augment the previous matrix by

adding these coefficients as another column
on the right side of the matrix,

&

Fig. 25--Flow chart of the tube scattering
computer program.
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| of the total field.

——3i D0 100, J = 1, M1 (M1 is the total number

P o 1 e b B B
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v®

Solve the system of equations using the

Crout reduction method. The solution

yields the Fourier expansion coefficients
Write out the Fourier

Calculate and write out the far scattered
fields and the backscattering cross-section.

coefficients.

. i

| END ]

RING SUBROUTINE
e

Calling parameters (NX,MI,A,Z1,AL,T,TL,DL) |

e .

[}nitialize all integrais to zerol

{ 55 continue |

v

of matching rings on the tube. )

| Divide the ring into a minimum of 30 cells |

Test to see how far the match point in question
is from the ring.

3

Assign the number of “near" cells (to be
integrated over using the NRCELL Subroutine)
also determine if the singuler cell calculation
is needed (if the match point is in the ring)

Y

Calc. the contribution of the "far" parts of .
the ring. {

Y

[ 200 continue ]

Y® '

Fig. 25-~(continued).
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@

If the NRCELL subroutine 1s needed, set the
number of subcells needed in each "near"
“cell, call NRCELL subroutine and add the
contribution to the “far" results,

Y

71 continue

y

Calc. and add the singular cell contribution
{f needed. 1f not, skip around this calculation.

Y
[755 continue 1
Y

Calc. the coefficients (Al,...,A9,B2,...89)
for each match point. The longi tudinal ,
symmetry of the tube is used to simplify the

calculations.

Y
100 continue

Y

[:ﬁrite out the coefficients for each match point J

Y
| END . ]

NRCELL SUBROUTINE

Calling parameters (M,RC,PC,ZC,AL ,NX1,XM,¥M,
IM,AA,BB,CC)

Y
[ tnitialize integrals to zero |

| 50 continue |

I
Divide the cell {nto M3 subcells and calculate
the total cell integral as the sum of the contri-
butions of each of the subcells.

Y
| 100 continue . ]

END

Fig. 25--(continued).




VAN DOEREN: Re Ee JOBN FGB230 8
SEXECUTE 18408

18408

SIBFTC MAIN NODECK

OOOO0O

1 FORMAT (21547F10e%5)
22 FORMAT (SX«4HJ = »15)

~Nouasun

FORMAT (12F10e4e/)

FORMAT (SXeBE16eT e/ eSXIBEL1GeT e/ 48Xe6E16eTe//)

FORMAT (SXeOHMXX = o 15)

FORMAT (SXeO6E 165074/ ¢10Xe6E160T70/)

FORMAT(BX s 1 7THER s ToLsAWAVIFR s 7F 116/ ¢SXBHSIGMA = F1649)
FORMAT (2X+ 10HATAU(O+1)2¢2F 10eSe11H BPHI(0e1)242F10eSelld ATAUC(L 1)
22:2F10¢Be11H BPHI(1¢1)18¢2F10+%)

8 FORMAT(5X215%)
9 FORMAT (SXsSHJUT s +1%:/)
10 FORMAT (111%)

1

12 FORMAT (SXe1QHTHE BeS FOLLOW)

FORMAT (5X+¢14HTHE A+S FOLLOW)

13 FORMAT (SX+28HTHE AUGMENTED MATRIX FOLLOWS)
18 FORMAT (5X«28HTHE AUXILIARY MATRIX FOLLOWS)

COMPLEX FTHSFS
COMPLEX A1(6¢3¢2)0A21(60¢3¢2)1043(643:2)1084(6¢3¢2)145(6¢342)
COMPLEX AG(613¢2)sAT(6¢3:¢2)10A8(6:¢3¢2)1¢AF(6:3:2)
COMPLEX Bl(6+3¢2)¢B2(60¢3¢2)¢83(643¢2)1¢84(643¢2)4B5(643¢2)
COMPLEX B6(6+¢342)187(603¢2)eB8(643¢2)e¢89(6:¢3:2)
COMPLEX AA1(65e3¢2)0A82(6¢3:2)10AA3(6¢3:¢21+AA4(8¢3¢2)0AA8(6:¢3,2)
COMPLEX AAB6(613¢2)¢AAT(E¢34210AAB(64342)0AA9(64342)
COMPLEX BB1(613¢2)+BB2(6+3+:2)1+8B3(6¢3:2):8BA(6¢I¢2)BRS(643+2)
COMPLEX BB6(6+¢3¢2):BB7(6:3:2):888(6¢342)¢B8%9(6:302)
COMMON /AAA/ AA1+AA2VAAZ4AAGAASAAG1AATALB.ALT:8B].8A2.883.884.8
2B8%.886.887.888.889
COMPLEX C(T72472)+E«FFFTHFPSER
COMPLEX ARGsARGZ2+EX
COMMON /XXX/ XM(10)+2ZM(10)
COMMON /JwWW/ Jww
OIMENSION JZ(10)
INTEGER ODEV
READ (Sel) NNNoMMMeAsToeTL¢FRIER
NNN S THE MAXIMUM PHI-MODE INDEXe
MMM (S THE MAXIMUM L-MODE INDEX.
A I8 THE MEAN RING RADIUS ( OR TUBE RADIUS)e
AeTs)Le ARE [N INCHESe FR IS IN GIGAHERTZ.
ER IS THE RELATIVE DIELECTRIC CONSTANT (COMPLEX IN GENERAL).
DO 1S THE APPROXe LENGTH IN WAVe OF EACH ELEMENTAL RINGs
NXsNNN+ L
MX = MMM+ ]
MMX a2 BMX- ]
MMX IS THE NUMBER OF MATCHING RINGS OVER THE TUBE.
M1 =MMM
READ (Be10) UTetJZtI)elnt sMMX)
JT 1S AN ODD INTEGER (THE TOTAL NUMBER OF RINGS FOR [INTEGRATION).
WAVs1],803/FQ
AsA/WAY
TsT/WAV
TL*TL/WAV
T18JY
DLuTL/TI
DO 41 Jm) cMMX '
T18J2(J)=)
ZMCJ)ISTIRDLSOL 20
XMtJ)=A

41 CONTINUVE

WRITE (Ge)) MMXeJT o (ZM(J) e JIm] aMMX )
WRITE (6e1) MMXeJTe (XMII) eJn] eMMX ) '

Fig. 26--Tube scattering computer
program statement listing.




s2
(<
(4
35
S0

ALa0s0

N=NX

DO 82 Jsi . MMX

DO 82 M=} oMx
AttIeMeNI=(0s400)
A2{JMiNIB(04 0400
AJtJeMiNIZ(0s0Cs)
AR TJoMaNIZ(0q404)
ABC(JsMINIZ(Oe 04
AGLJeMiNYZ(Das00)
ATCJeMeN)IB (04404
ABCJeMNI® (0400
A9(JIeMINIB (00400
BIl(IJeMiNIZ{DesCe)
B2{JeMeN)IZ(De000)
B3 {JIMN)IZ (06400
BA(JoMINI=04400)
BB IJIsMeN)I2(0e404)
BOtLJeMNIZ(0Oe eCl0)
BTCIeMeNIZE{044Ce)
BBLJIMeNI=(Das00)
BO(JeMNI= (0600 )
CONT INUE

THE SYMMETRY OF THE TUBE 1S USED SO INTEGRATION 1S NEFDED OVER###&

##%#%# ONLY ONE HALF OF THE TUBE
JT2E(JIT+1)/2

Al=A=-T/24

DO B0 JismléJT2

JuwsJy

Tis}

Z1e(TL#DL)I-OL/20

NENX~-{

CALL RING (NeMisAT+ZLoAL«TeTLDL)

NERNX

00 35 Js) eMMX

DO %% M=l eMX
ALCJoMINIZA)Y LI oMeN) +AAL (JeMIN)
A2UJeMINISAR LI MNI+AA2(JsMeN)
AJ(JIeMNIZAZ LI eMeNI+AAD (UM N)
AQGLJIsMIN)IBAG (I sMN)IFAAQG(JaMeN)
AS(IsMINIZAS(JMeNI+AAS (UM N)Y
AGCJeMiN)IZASLIeMeN) +AAG (S M N
ATIIeMeNIZATIIMINI+AAT(JeMeN)
AB(JosMNISABI I McN)+AAB(JeMN)
AD(JoMeN)ZAG(JsMIN)I+AAD(JeMeN?
BItJsMaNIZBI (JsMeNI+BBI (V1M N)
B2(JaMNIaB2(JMNI+BB2(JeM N}
BIIeMiNIZBI(JoMN)$BBIJIeMIN)
BA(JeMeN)I=BA(JoMeN)+BBA(JeMNY
BBlJIeMeNIZBS (I MN) +BBS(JeMeN?}
BOIJIIMeNIZBE(JeMeN) +BSEI{JIIMIN)
BT7(JSMeNI =BT IJeMeNI+BBT (I MeN)
B8IJIMIN)2BB(JMNI+BBB(JeMIN}
BOCJMINIZBD(JeMIN)*BBI(JMIN)
CONT INUE

CONT INUE

00 60 J=} . MMx

00 60 M=) «MX

WRITE (6¢8) Jem

WRITE (6411)

WRITE (6.5) ATTIeMINIAZ2(JeMINIVAI(JIMNIcAS(JoMIN) cAS(JeMoNT oA
26 (JiMaN)sATIIeMINIAB(IeMIN) ¢ ADLJeMMeN)

WRITE (6.412)

82

WRITE (6+8) BI(JeMiN)IeB2(JoMNTBIIIMIN)sBALIJIMINIIBS(JoMoN) B8

Fig. 26--{cantinued).
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83

2¢MiN)IBT7(IMIN)I eBBLJIMIN)I B9 (JeMN)
60 CONTINUE
EsER=1,
NEXT STEP [S CALCUL.ATION OF THE COEFFICIENT MATRIX.
00 70 JtisfeMMX
D0 70 Mls=)eMX
THE FOLLOWING SETS UP THE COEFFICIENT MATRIX.
THE MATRIX 1S FILLED IN FROM LEFT TO RIGHT.
;2§lsrﬂLLEST VALUE OF M 1S TO THE LEFT«M [INCREASES TO THE RIGHT
TisMm
Jedi=-1
CM=COS(6.28319#T1#ZM(J]))
CMaSIN(E28319#TIHZM(JL ) )
{SagHJ
IF (M1eEQs1) KS=0
IF (M1eGE2) KS=12¥M-6
112]1S4+}
12a35+2
13=]15+43
l4n]S+4
189215+8
16215+6
K1akS+1 1
K2=sKS+2
K3axKsS+3
K4=KS+4
KSsKkS+S
K6SKS+6
K73KS+7
K8aKS+8
K9sKS+9
K10xKS+10
KilaKS+1]
K12=:KS+12
C(l1eK1)SCM=ERAL (J] oMLl eN)
Cll1eK2)2(0ee04)
ClI1eKI)a=ERAI(JL oML oN)
CllleKA)In(DesDy)
Cll1eKS)12=ERA2(J1eM]N)
Cll1eK6)2(0640,)
IF (M]+EQ.1) GO TO S00
CLtI1eK7)IRSM-ERBL(J] sM]1 N
Cil1eKB)I=(0esD,)
Cl11¢K9)I==ERBI(J]1 M1 N)
,Ct114K10)2(0ae00e)
ClI1eK1]1)2~ERR2(J] oML N)
Cl11eK12)2(0e400)
300 CONTINUE
ClI2eK1)In(00ee0s)
ClI2eK2)8C({1eKl)
Cll2¢KI)12(D0eD0)
Cll12+Ka)3=Cl]].K3)
Cl12:KS)u(0e40,)
Cl12:K6)aC 1] eKS)
IF (M1.EQ.1) GO TO %01
ClI2eK7)2(00e04)
C(I12eKB)=C(114x7)
C(12¢K9)2(00e00,)
Cl12¢K10)2=C( 114K
ClIZ2eK11)8(0ee00
CCl2K12)2CULIY4K11)
801 CONTINUE
CUI3eK1)nERARI YY) oM sN)

Fig. 26--(continued).
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%02

302

S04

303
70

Ct13e12)2(De4Ne)
CUI3eKI)2CM-ERAB(I] ¢MI(N)
ClI3eKa)R(Ne4N,)
ClIDKS ) =ERAR (U1 4M] N)
ClI3eKEI2(Da 404

IF  (M1,EQel) GO TO %02
ClI3KTIsE#BR (UL M) 4N
ClI3eKB)IZ (Ve D4
CHIBIKIISSM=ERRGE (S sM] 4N}
ClI3eK101x(04404)
CUIDIKI1INE#BS (Y1 e ML oN)
Cl134K12)%(0,404)
CONTINUE
CllasK1 )18 (DeeNe)
CllasK2)1maC13eK1)
CllasKI)In(0ay04)
CilaskarsC13.xd)
Cll1aeKS)IR(D4,40,)
Cll4iKS)n~Cl]3,K8)

IF (M14EQ41) GO TO 803
ClIQIKT)I%(0e00,4)
CllaeKB)s=C(1I4Kx7)
CllaeK9)m(0440,)
C(lasK10)nC( 13K
CllaeK11)m(N, 404
CllaeK12)2=Ct134K11)
CONTINUE

ClISIKY I=-ER#AT (UL oM] «N)
ClIBeK2)8(0e404}
C(!5'K3)"E'A9(JI.N!ON)
ClIBeKa)=(Das04)
CUISIKS)ZCM=ERAB(J] JM] o N)
ClISeKE)IZ(0s40,)

IF (M1.EQ.1) GO TO %Na
ClIBKT7)2~ERRTIUTI ML eN)
ClI%«KB)I= (04004
ClISKG)e<EXRD (U] oML «N)
ClIBKIOIn(04eNy)
CUISeKI1)uSM-ERBBIJ] +M] ¢N)
ClISeK12)a(04404)
CONTINUE
Cl16eK1)I®{0es04)
Cll6«R2)sC Ikt
CllBeK3IIZ(Nee0,)
CllaiKa)Is~C(15,K3)
CllBeKS)®(04s04)
Cll1G¢KE)ISC(I8,xS)

IFt M1.EQsl) GO TO S0
Cll6sRT)I=(Nee0,)
ClI8.xB)=C(1%,x7)
Cl18iKD)I (N0,
Cll8«K1N)u=C(18,x9)
CllGeK1112(044041
Cll8sKLI2)8Cl I
CONT INUE

CONT INYE

MXlu{SoMMX )+t

DOWN TO 80 1S CALCe THE LAST COLUMN OF THE AUGMENTED MATRIX,
DO B0 Jiwm|eMuy

. JeJd1-1

18esny
ARG32642831942M (1)
ARGeCMPLX (04 ARG )
11=1S54+)

Fig. 26--(continued).
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non

a 000 OHOHOOOON

ac

82

117
171
118

t20

122
123
126

126

85
12=15+2
13=15+3
14=1S+4
1S531S+5
162 )S+6
Ci11eMX1)=CEXP(~ARG)
ClI2eMX1)=(00400)
CtI3eMX1)=2=CEXP(~ARG)
Ct14asMX1)2(06 0
Ctl1SeMX1)2(0s+04)
ClI6EeMX1)I2(0eaDe
IF (JeEQel) WRITE (Bel) JeJeARGIC (]l oMX] I oC(I0MX1)
CONTINUE
JJII=HRMMX
SNNIE NENLS!
WRITE (6+413)
DO 82 J=1+JJI
WRITE (6¢8) U
WRITE (6+5) (CtJUeM)eM=14JJIL)
CONT INUE |
THE COEFFIECENY MATRIC IS 6%#MMX BY 6%#MMX,
THE AUGMENTED MATRIX IS &%MMX BY (&6#MMX+1)
THE FOLLOWING ]S THE CROUT REDUCTION OF THE COEFFICIENT MATRIX.
MXXEG*MMX
NNEMXX+ 1
DO 118 L=3]eMxX
tiL=L-1
DO 118 1C=L +MXX
t1=alC+}
IF (LLL+EQs0) GO TO 1171
DO 117 K=)LLL
CLICIL)I=CICIL)I=C(ICKIRCIK.L)
ClLeI1)N=CiLol1)1=CILeKIRC(K 1)
CONTINUE
Cllell)=CiLl1)/CLL L)
WRITE (6+148)
WRITE (&+8) MXX
DO 120 JU=]eMXX
WRITE (6+22) J
WRITE (§+2) (C(Je])elm] eMXX)
CONTINUVE
IF (MXX.ECQel) GO TO 124
DO 123 1L.32:MXX
1CsNN-
[Is1C+1
DO 122 K= sMXX
CUICNNISCLICWNNI=CLICKIRCIKINN)
CONT INUE
DO 126 Js) sMXX
WRITE (6+3) C(J«NN)
CONT INUE
THE FOLLOWING COMMENTS APPLY FOLLOWING THE CROUT REDUCTIONe
Cl1+NN)IZA(0s1) SUPER(TAUY
Cl{2+sNN)SB(0s1) SUPER (TAW)
CLINNIZB(0 ] )SUPER(PHI )
ClA«NN)ISAID 1 )ISURER(IPHL)
CUB«NN)=A(Os]) SUPER (L)
C(6«NN)sP (041 SUPER (L)
CIM«NN)=AS(0s 1) SUPER (TAU)
C(BNN)ISBS(D,.)) SUPER (TAUY
AND SO OMN esecesosns
NN IS THE INDEX OF THE LAST COLUMN OF THE REDUCED MATRIX.
WRITE (6¢7) C(I+NNIsCIIeNNIeCI(TNN)¢C(OINNY
THE REST 1S CALCe OF THE SCATTERING CROSS-SECTION.

Fig. 26--{continued).
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EtH2(0esNe)
FPSa (06404
FTHS 2(04404)
JTTTT=280T
NLaDL/2e
DO 201 M=) emX
Fre(0ee04)
*82(0ese0s)
MME M=
TaaM=| .
IF (MeEQel) MSsO
IF (MeGEs2) MSz2)28MM~6
MS1aMS+]
MS23MS+2
MS3=MS+ 3
MSaxMS+a
MSTeMS+7
MS9eMS+9
DO 200 Js1+JTTTTY
Tisy
2=(TieDL )~DL/2.
ARG186428319%2
ARG28CMPLX (04 ¢ =~ARG! )
EXsCEXP(ARG2)Y
CMRLOS(2:,9T283,14159%2)
SMaSIN(2%T287,14159%2Z)
FresFF+CMREX
FSeFS+SUREX
200 CONTINUE
FTHaFTHH(C (MG NN)=CIMS T NN) Y BRF
IF (M,EQel) GO TO 2011
FTHSSFTHS +{(CI(MST«NNI=C(MSQ.NN) IS
2011 CONTINUE
WRITE (6¢2) FFFS«FTHFTHS
2n1 CONTINUE
c NN 1S THE INNEX OF THE LAST COLUMN OF THE REDUCED MATRIX.
COINA N (34141598 RF )R {(THDOLSA)SS2)
CO2s(CABS(1+s-ER)IER2
S1GsCO1 #CO28 ¢ (CABSIFTH4FTHS ) ) #82)
WRITE (646) ERTeTLAWAYFRLSIG
2n2 CONTINUE '
STOP
END

‘S{BFTE DECKL ~ NODECK

SUBROUTINE RING (NXeMIsAcZleALToTLIOL)
ALL DIMENSION ARE IN WAVELENGTHS,
NX 1S THE MAXIMUM PHI MODE INDEX.
Ml IS THE MAXIMUM L =-MODE [NDEX.
21 1S THE Z~-COORDINATE OF THE CENTER OF THE INNER SURFACE
AL®0O0 [N ALL CASESS
AL 1S THE VALUE OF ALPHA AT THE RING BY¥ING INTEGRATED OVER MERE.
A 1S THE INNER SURFACF RADIUS OF THE RING PAEING INTEGRATED OVER.
T 1S THE RING THICKNESS NORMAL TO THE SHELL SURFACE.
DL 1S THE INCREMENTAL ARC LENGTH ALONS THE SHELL.
REAL Lot J
COMMON /XXX/ XOULN)e20(10)
X0+20 ARE THE MATCHING POINT COORDINATES,
COMMON /ZJWW/ Jww
MXuM]+)
MlePoMX~-} :
(4 M) 1S THE NUMBER OF MATCHING RINGS OVER THE TUME,
NXtaNX4+t
OIMENSION ST(B)4SPISIaSLIS)
COMPLEX XPsP,0sP1(3)¢P2(3)¢PI(I)1¢PatIIPRII)PAHII)IPTTI) DA (T)

CODODOOODN

[4]

Fig. 26~-(continued).
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COMPLEX PG(3)+P10(3)1+P11(3)1eP12(A14PI3( )P4 eP15(2)PIBHII)
COMMON P11 +P2iP3+Pa PSP T+PBsPGuP NP 1 «PIZ2+P13+P143.P1SPL1 S
COMPLEX VI{(542)14V2(5¢2)eVIIE42)VA(S542)VS(S12)14VE(F5:2)3VT7(5:2)
COMPLEX VOIS5:42)eVOIS42)sVIOISe2)1eVI1(542)14VI12(5:2)9V13(542)
COMPLEX VI4(5¢2)1eVI1IS5(5:2)eVIHISe2)
COMPLEX XPP4XPQ
COMPLEX A1(6¢3¢2)0A2(603¢2)¢A3(6¢3021484(543¢2)1A5(662:2)
COMPLEX AG(H64342)0AT(642¢2)14A8B(6402¢2)1:04F(6e¢3e2)
COMPLEX Bl1(6¢3:¢2)1B2(6:¢3¢2)1¢833(603¢21¢84(6¢3:2)1:185(6¢7+2)
COMPLEX B6{(6¢3¢2)19PB7(6¢7¢2)¢AB1E302)489(6e3¢2)
COMMON /AAA/ A14A24A30A440A54A60A7:48:A9¢B81+B2+R3+BaRS«B5+B7+88.89
FIRST SUBSCRIPT IN Al ETCe [DENTIFIES THE MATCHING RING.
SECOND SUBSCRPT 1S THE L-~MODE INDEX PLUS
THE THIRD SURSCRIPT IS THE PHI-MODE INDEX PLUS 1.
D0 S0 N=1 «NX}
DO SO I=f M}
VitieN) 2(0aeny)
V2(1eN) 3(JeeNq)
VI{IeN) 2(0e404)
VACIoN) =(0eae04q)
VS(TeNY 2(Jee0,)?
VE{T«N) =2(Nes0,4)
VT(IeN) =(0es04)
VB8(IeN) 2(Dee0,4)
VO{leN}) 2(0a0e0,4)
VIO(TI«NI=(0eeCy)
V111 eNI=(0ee0,)
VI2(1eNIZ2(0eey)
VI3(1eN)2(0ee0,)
V9IQA(1eN)=(D0e0,)
VIS(IeN)= (00004
V161 «eNIZ(DeeN4
50 CONTINUE
NO 55 J=1 M)
DO 5% M=] MX
DO 5% N=! «NX1}
AY{JeMeN)=(OaoNe
A2{JesMeNIZ(0a o0
AJ(JsMeN)IR (Do Ny
AQ(JeMeN)IR(Des04)
ASC(JeMiNI=(0esNe)
ABLULIMINIZ(0e 0,9 )~
AT(JIsMeN)I={0se04)
AB(JeMsNI= (04N
AGLJIMeNIZ(Dge900)
Bl(JeMeNIZ(0e 00}
B2(JeMiN)I= (04404
B3(JeMeN)IB(0e N0
B84(JeMiN)I= (0,6 400)
B (JeMiN)I=l0e400)
BO6(JeMeN} =2 (06000
BT7CJeMNI= (00404
BB(JIMINI®{0440,4)
B89 (JeMiN)2(0e404)
58 CONTINUE
NO 100 Jstamy
c J HERE RUNS OVER THE NUMBER OF MATCHING RINGS ON THE mODY (SHELL)e
c ALPHA MEASURED FROM TANGENT TO Z-AXISe CCW IS POSITIVE, CW IS NEGe
RCs{A/COS{ALYIS*T/20
AC=RC®»COSIAL)
2C2Z1+(T/2«)2#SINIAL)
XCsAC
NO®3s14139%AC/0,01
IF (NOet.Te30) NO=30

(2 X2 X4 ]

Fig. 26--{continucJ)
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TTI=ND

DPHI=I14159/TT]

OV TH#DL#ACHDPHI /6428319
RTESTESART((XC=X0{J) ) R824 (ZC-20(J) 1482}
NO1=lel #DL

ND2224+1#0L

IF (RTEST.LT,0N2) KO=}1

IF (RTEST.LT.DON1) KO=16

1F (RTESTeLT40.00)) K0O222

IF (RTEST.GT.DD2) KOst

DOWN TO 200 1S CALCULATED THE CONTRIRe OF THE FAR PARTS OF RING.
NO1=NO+1]

DO 200 K=axKOQeNOY

TTisK~]

DHu (DPHI /24 )+ TT I #0PH!

C=COS (PH)

S SIN(PH)

XaxX0(J)=~ACHL

Ye-ACHS

2220 0)~2C

IF (ZelTe0eN]) WNTHDO6HE66TH((DL/2,)083)
IF (Z2eGTe0e0)) WYT=2Z%2

ReSORT IXSR2IYRR2+ZHRD)
ARR5.28319%R

ARSsAR¥P2

RIsReY

RS=R*SS :
OR= (=] +ARS) /R

O1s-AR/R3]

PaCMPLX(PRPT)

QR= (3. -ARS)I/RS

Qls3.%AR/RS

QsCMPLX(QR«Q1)
XPaCMPLX(COS{AR)+=SIN(AR))
XPPeXP#P

XPQAsXP#Q

NO 200 N=1«NX)

TT2aN=-1

CNCOStTT24PH)

SNaSIN(TT2#PH )

VICGJoN)I3VLE (JoNI+CNRCHDV IXPP
V2(JsN)I2V2{JIN)+SN#SEDVEXPP
VIC(JINIaVILJoN) +XEXBCNRCEDVEXPQ
VACJINIEVA LI NI+ XX BSNESEDY #XPO
VEBIJeN)2VSIJIeNI+XRYRCNESEDV#XPQ
VELJeN)2VE LI N+ XRYRSNECRDV #XPQ
V7(JeNIaVTIJeN)+XRZACNRDV #XPQ
VBI(JeN)IBVBI{JeN) YRYSSNESRDVE#XPQ
VO (JeNIBVO LI NI+ YRYSECNECHDVEXPQ
VIO(JeNISVIOIJWN) +YRZESNROVEXPQ
VIT{JeNIBV1] [JIN) +CNRDVEXPP
VIZ2(JeN)IBVI2(J NI+ ZEXECNSCHDVEXPQ
VIZtGJsNI2VIIS NI+ ZAXESNISHDVEXPQ
VIA(JeNISVIA LI NI +ZRYECNESEDVEXPQ
VIStIJeNIsVIS(JINISZRYESNRCADVEXPQ
VI6(JeNI2VIS{J NI +WTTECNRDV #XPQ
CONT INVE

DO 201 NateNX1

FORMAT (/7/7+5X41%)

FORMAT (BXe8F 11e66¢/7e8XsAF11e6¢/748Xe8F11e68¢/¢8X8F1Lebe/7)
WRITE (6+1) JN

WRITE (602) VII(JeNIsV2ISINIoVIIIINIeVALIIN)VEIIN)IeVELIN) VT TN
P eVBIJINIaVIIIINI s VINCIoNIsVIEIJINIGVIZIIeNIeVIIIIINI VIS I IN) sV S
2C(JeNIsVIB(JeN)

Fig. 26-~(continued).
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271 CONTINUE
tF (KOEQel) GO TO 71
IF (KOeEQell1) N1=2
IF (KOeEQ416) N123
IF (KD4EQ.22) Niza
c NOTE THAY KOal OR N1=2+3¢40
C IFf KOx)« THE MATCH POINT IS FARe NRCELL SUBROUTINE 1S NOT NEEDED.
DIMENSION MZ(4)
IF (NJ1eNEL2) GO TO 61
MZ(1)=a
M2Z(2)=a
GO TO 63
‘ 61 IF (N1eNE.J) GO TO 62
MZ(1)=)0
M2Z(2)=4
MZ(3)=4
GO TO 63
62 M2(13220
MZ(2)=10
! MZ(3)=4
: MZ(4)=4. !
63 CONTINUE '
DO 70 =] ,.N1
TT3sl=~1
OPH=S #DPHI
IF (N1eNEed) GO TO 6% L
OHI =DPHI+DPH /2, + TT3#DPH i
GO TO 66
63 OHI=DPH/24+TTARDPH
66 CONTINUE
XC=AC#COS (PH] )
YCSAC#SIN(PH] )
ZC=2C
XMsX0(J)
YM20e0
ZM=20(J)
AA=T
BB=DPH
CcC=pL
ME=MZ (1)
CALL NR7ELL (MM AC«PHI ¢ ZCoAL o+ NX] ¢ YMeYMeZMJAA«BBCCY
DO T0 N={ NXt
VI(JeNIZVI ({JeNI+PLINY .
VZ2(JeNIBV2(JINI+P2(N)
V3(JeNIBVI(JeNY)+PIIN)
VAIJNIEVR (JeN)+PA (N)
VB (JeNIBVE (I NY+PS(N) .
VO(JSeN)aVE(JeNI+PEIN) :
VZUJeNIBVT LIeNI4PTIN)

VB IJeNIaVB (NI +PBIN)

VOUIN) 3VI(J NIV +PI (N)

VIQ(JeNIBVINDLINI+PLIOIN)

VI1EJeNIEVIT (I NI+P1 ] (N}

VI2(JeNIBVI2(JNI+PLI2(N)

VIS(IeNISVIIINIAPII N

VIA{JoNITVIG(JINI+P1a(N) Fig. 25 -~ (continued)
VISIJeN)IaVIS{UNI+PISINY

VIS(JeNISVIS(JNIHPI6(N) {
WRITE (8+41) T4JeN !
WRITE (6¢2) P1INIP2(N)+PIINIPEINIPSIN)IPEIN)IPTIN)PBIN)PIIN)» .
2010(NIPLIIN)sPI2INIRIAIN)IPIGINIPISIN)PISINY

WRITE (602) VITJoN)I +V2(JeNIsVIIIeNIsVAIINIeVE(JeN) oVEBIJeN) o VTLJN
2)eVBULIeNI eVIIJeNI e VIDIJeNIeVITI(JINIGVIZ2(INIVII(JIN) VIA(JeN) e VIS

PORCUPISIPREN

b =2

. Fig. 26-~(continued).
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CONTINUE

CONT INUE

IF (KOJL.Te22) GO TO 80

IFf k0222 THE MATCHING POINT 18 IN THIS RING 1TSELF,

DOWN TO 8D 18§ THE SINGULAR CELL CONTRISUTION.

A19T/2s

B1SACPDPH]

C1=0L /2

CQSSART (A1 #4248 18824C)1882)

TT292e/74014159

QT (J)In=] e+ TT2R(ATANC(ALIRCT )/ (B19SO)I+ATANI (AR )/(C14SQ)Y)Y)
EP(J)s=] ¢+ TT2R(ATAN((BI#A]1)1/(CI*SQ)I+ATANI(CI®#RL)/(A1250) )
CL(JIS=1e+TT2R(ATAN((CIH#BL)/(AINSA) J+ATAN((CLI#AL ) /7 (B12S0)))
FPORMAT (3X«BF11:6)

WRITE (8+1) J

WRITE (8:3) ST(J)eSPLUYSLIY)

GO TO 8%

CONTINUE

§P(J)1=040

SP{J)I=0e0

8L {J)=0.0

CONTINUE

N®2

PORMAT (31109

FORMAT (8F10.6)

PUNCH S.JwWWeJ N

PUNCH 6+STIJ)eSPEIIeSLIUI VI IIeNIVRIIIN)IsVILIGNIVALIINI VS (JIiNDY o
PVALINIIVTIINYIVBIIINIaVIIINIVIOIIeNIeVII LN eVIZ2(JeNI e VII(J N
2V V1A 1IN VIS (JINI s VIS IJNY

JWW 1S THE RING INDEXeJ THE MePe INDEXIN THE PHI=MODE INDEXees
CeCOSIALP (U)) .

SeSINIALP LYY

CAsLOS(AL)

QAsSINCAL)

CONT INUE

LefFLi21)

PLIZ) 1S A FUNCTION GIVING L AS A FUNCTION OF 2 ,

DO 90 Nsi«NXt

DO 90 M=m] JMX

TTSaM-)

GsTTS2#),141%9

CMCOS (2 #GHL )

CMESIN(2,8GH )

COMPLEX Tl eT2eT3eTqAsTSeTET?¢TBeTOeTI10eTI10T12:T13¢eT14:T1%8.T16
T12V](JN) .

T28V2(JN)

T32VItJN)

TesVa (JeN)

TBeVS(JeN)

TASVE(J«N)

TP?evT{JeN)

T8sVB (JN}

TOsVI (JN)

T10sVIO(JINY

Tii1eVil (JN)

T12svi2tJN)

T13=sVidtJNY

Ti148V14(JeN)

TISaVIS(JIeN)

T16sVi&6(JeN)

AL{JoMNISCME(TI+TI+TSHCT LI I4AY LS eMaN)
A2UJeMeNISCMETT4A2(JeMN)

AJ(JIoMINISCME (aT2=-TAa+TEI14A3(JaMN)

Fig. 26--(continued).
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AQCJIaMNIZCMRELT2+TEITB)I+AG(JsMN)
AS(JsMiNISCMET [D4AK(JeMeN)
AG(JIIMINIZCME(TI=-TS+TG+GR (J) 1 +A6(JeMeN)
AT(IoMNI=CMB(TI24T1414AT(JIMN)
ABCJIeMINIZCMBITII+TIOE4SLIJ)II+AB(JeM(N)
AGCJeMiNIZCMR#(=TI34+TIS5)I4AF(JeMeN)
BllJeMiN)SSMEITIHTI+TS+ST(J)) +B1 (JeMN)
B2{JeMN)sSMETT7+4B2( JsMeN)
BI(JIMIN)SMR(=T2-T4+TH)+BI(JeMN)
BA(JIIMIN)2SME(T24TE4TBI+BA(JeMN)
BS(JeMIN)SMETIO+RS (J4MIN)
BOIJsMN)2SME (T =TS+TO+SP (J)I4BE(JIMN)
BTlIeMeN)2SMRITIZ24T14)4BT(JeMN)
BBCJeMiN)2SMB(TI114TI6+SLII)I+BBIJIMN)
BO(JsMeNIESMB(=TI3+TI5)+89(JeMeN)

[ THE FOLILOWING USES THE MIRROR IMAGE SYMMETRY TO CALCe ALL. THE A+Se
IF ((ABSI(Z1=(TL/2e)))elT40s001) GO TO 90
JJEM]l~J+ ]
tJsTL-L
CMJI=COS(24#TTS5#3.14159%_ ) ‘

CMJIRSIN(2.#TTS#314159% )
AL(JIoMeNITCMIB(TI4TI4TSIST(III4ALIJIJeMeN)
A2(JIJeMeNIZCMIRI=-TTI®A2(IJeM N}
AL IIeMNYIICMIB(=T2=TA4+TE)I+AI{JIeMN)
AR EIIeMIN)ITCMIR(T24TE+TBIFAR (JJsMN)
ABCIIeMeNISCMIS[~TIDIHAS(JIIeMN)
AG(JJIoaMNIZCMIR(TLI=TS+TOSSP(J)I+A6(UJeMeN)
ATC(IIeMINIZCMIR (~T12=-TI4I+AT{JJeMeN)
ABUJJIoMINIZCMIR(TI14T1I64+SLIS)I I®AB(IJoMeN)
AGIJJIsMIN)IBCMIR(TII=T15)14A9(JJeMN)
BLIJIeMINIISMIRITIHTIHTRIST(JI)IIHBL (JJsMN)
B2(JJeMNISMIB (=TT I+B2(IJeMsN)
B3(JIeMN)SSMIR(~T2=Ta+TE)I+B31JJeMeN)
BAI(JIeMIN)ISSMUR(T24TE+TRI+BA (JJeMeN)
BS(JJeMINIISMUR(=T10)+8%(JJeMN)
BOIIIMINIESMIR(TI=TS+TIISP (U I4BE(JJeMeN)
B7(JJeMN)I2SMUR(=T12~T14)1+BT7 (JJeMN)
BB8(JJIMIN)IZSMIS(T11+T164SLIJ)IMBBIIIMN)
BI(IJeMINIZSMUB(T1I=T1%5)+BI(JJeMeN)
90 CONTINUE
100 CONT INUE
B FORMAT (SX+37HTHE A+S (FROM RING SUBROUTINE) FOLLOW)
9 FORMAT (BX+37HTHE BeS (FROM RING SUBROUTINE) FOLLOW)
10 FORMATISXeI1D16E16507¢/+5Xs6E16e7¢/¢SX06E16e747)
DO 101 fat .Mt
DO 101 JsteMx
DO 101 K= NX]
WRITE (6.8) .
WRITE (6010) 1eJeKeAL T oaJeKIGA2(ToJeKIAZ (T e JeKIeAG(T ¢ JeK)eAS o Je
2K IeASL T e JeK I s AT o JoKIsAB(T 9 JeK)IeAD (T4 JeK)
WRITE (6+9)
WRITE (Be10) JoJeKeBI (1o JoKIsB2U1eJeK)IeBICTodeKIsBAI],,JeK)IBS(ToJs
KIeBO6(1¢JeXK )BT L JeK)eBS(T ¢ JeK}eBF (e JeK)
101 CONTINUE
RETURN
ENO
SIMFTC DECK2 NODECK
KUBROUT INE NRCELL(MIRCePCeZCeALINX] +XMesYMeZMsAAWBBCC)H
NX1 IS THE MAXIMUM PHI-MODE [NDEX PLUS 1.
RC+PCeZ” DEFINE THE CENTFR OF THE NEAR CELL 4
XMeYMeZM ARE THE MATH POINT COORDINATES.
CELL DIMENSINONS ARE RszAAs PHI=BBe: LaCCe
P THROUGH P16 ARF THE VARIOUER INTEGRALS.
M 1S THE NUMBER OF SUBCFLLS AGONG EACH EDGE OF THE MAIN CELL.

[sXaNa N1 N X,

Fig. 26--{continued).
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| M#MEM IS THE TOTAL NOs Of SUBCELLSs ™ 1S EVEN

30

COMPLEX XPePQ

COMPLEX P1(31eP2(3) PRI PA(I)sPS(334P6E(31eP7(3)4PB(Y)PI(I)
COMPLEX P10(3)«PLIIINIPLI2(314P1I3(31¢P1413):P1S(I)eP16(I)
COMMON P1¢P24P3:PQaPEPEPTePBPI1PI10:P114P12:P13:P14.P1S.P16
COMPLEX XPP«XPQ

REAL LS

DO B89 N=1 JNX1

BPLINI®(0ee00

P2(NI®(0ee04)

BIINI®(0ee00)

PaINIEt10e400)

PB(NISt0ee10e)

POINI=(0ee0e

BTI(NI=(0ee00)

BB(NI= (04000

PYINIZ(O0aede?

D1O(NYS(0ee0a) .
BII(N}=(Des0,4)

PL12I(NIZ(0esQ4) i
P13INI=(0e+00)

PlaiNI=l0eeDe) i
PISIN)=t{0se0e) H
O16tNIZ(0erD0)

CONT INUE

TisM

T2amM/2

AAA/TY

BaBB/T)

CaCC/T1

RADSaRC=(T2-04%500) %4
PHISRPC(T2=05001%8
LES=2={T2=0e50012C

DO 100 l=i«M

Tisl~1

PHIsPH]S+TI 88

C1sCOS(PHI

S1sSIN(PHI)

D0 100 UsiM

TisJe=)

RAD=RADS+TLI #A

DO 100 KsleM

TisK=1

t sLS+TI8C
XaXM=(RADSCOS (AL )I-LASINCAL ) I#COSIPH])
YaYM=(RADRCOS(AL)I-L*S[NTAL ) ISSINIPH])
ZeZM=(Zr+L#COS(ALTS

ReSORT (X#X+YSYIZRZ)

RI=2R#e3

NABaRessy

ARis8.28)319%R

PRs (~] « PARRARYI /R

Ple=AR/RY

BaCMPLX (PRPT )

QRs (Je~ARBARY/AS

At *AR/RS

QeCMPLX (GRGT )

APSRAD®~OS (AL

OVEAPRDSARC/6.28319
XPeLMPLXICOS AR+ ~SIN(ARY)

RPPaxP 4P

XPQAnXP*Q

DO 100 NsioNX1

T2sN-1

e NP

Fig. 26--(continued).
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100

CN=COS(T2#PHY )
SNsSINI(T2#PHT)

CND=CN*DV

SND=SNADV

B1 (N)=P]1 (N)+C 1 #CND*XPP
P2(NI=PZ2(N)+S ] #SND#*XPP

DI (N) 2P (N)+XEXRC ] #CND#XPQ
PA(N)I=PS (N)+X#X%S] #SND#XPQ
BE(N)=PS(N)+XSY#S] *CND*XPO
BEINISPEIN)I+X#YRL ] #SNDEXPO
BP(N)SPT(N)+X#2Z#CND#XPQ

PG (N)=PB(N)+YH#Y#5] #SND#XPQ
BGIN)ZPO (N)+Y#YEC I #CND*XPQ
BIOINIZPIN(N)+YEZESND#XPQ
B11INI=P] ] (N)+CND#XPP
B12(NIaP]2(N)+28X#C 1 ¥ CNO#XPQ
PIIIN)ISPII(N)+Z#XHS ) #SND*XPO
PlLa(N)=P1a(N)+Z8Y#S ] *CND#XPQ
PISIN)I=PIS(N)+2#v#C ] *SND#XPQ
BI&IN)I=PI&IN) +282ZRSNDRXPQ
CONT INUE

RETURN

END

SIBFTe DECK3 NODECK

SDATA
1

11

FUNCTION FLIZ)
LsZ

RETURN

END

2 0e650 0e¢100 1570 6.230
2 L} 6 8 10

Fig. 26--(continued).
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